Namespace xlifepp#
-
namespace xlifepp
-
main namespace of XLiFE++ library
Typedefs
-
typedef EcType BcType
-
typedef void (*BFFunction)(BFComputationData &bfd)
-
typedef std::pair<BasicBilinearForm*, complex_t> bfPair
-
useful typedefs to MatrixBilinearForm class
-
typedef EssentialCondition BoundaryCondition
-
typedef EssentialConditions BoundaryConditions
-
typedef Disk Circle
-
typedef std::map<uvPair, SuBilinearForm>::const_iterator cit_mublc
-
typedef std::map<constUnknown*, SuLinearForm>::const_iterator cit_mulc
-
typedef std::map<uvPair, SuTermMatrix*>::const_iterator cit_mustm
-
typedef std::map<constUnknown*, SuTermVector*>::const_iterator cit_mustv
-
typedef std::vector<OpkuvValPair>::const_iterator cit_opkuvval
-
typedef std::vector<OpusValPair>::const_iterator cit_opusval
-
typedef std::vector<OpuValPair>::const_iterator cit_opuval
-
typedef std::vector<bfPair>::const_iterator cit_vbfp
-
typedef std::vector<lfPair>::const_iterator cit_vlfp
-
typedef std::vector<real_t>::const_iterator cit_vr
-
typedef std::vector<Unknown*>::const_iterator cit_vu
-
typedef real_t (*ColoringRule)(const GeomElement&, const std::vector<real_t>&)
-
alias of a function describing a GeomElement coloring rule
-
typedef complex_t Complex
-
typedef Vector<complex_t> Complexes
-
typedef Complexes ComplexVector
-
typedef dimen_t Dimen
-
typedef short unsigned int dimen_t
-
typedef for short unsigned int
-
typedef ClusterTree<FeDof> &DofCluster
-
typedef GeomDomain &Domain
-
typedef std::pair<const GeomDomain*, const GeomDomain*> DomainPair
-
useful typedef for domain objects
-
typedef PCollection<GeomDomain> Domains
-
collection of GeomDomain pointers
-
typedef std::pair<MeshElement*, number_t> EltNumPair
-
useful alias of a pair of MeshElement* and number_t
-
typedef EulerT<real_t> Euler
-
typedef Interpolation &FEInterpolation
-
typedef FilonIMT<complex_t> FilonIM
- complex_t() funSC1_t (const complex_t &)
- complex_t() funSC2_t (const complex_t &, const complex_t &)
- complex_t() funSC_t (const Point &, Parameters &)
- real_t() funSR1_t (const real_t &)
- real_t() funSR2_t (const real_t &, const real_t &)
- real_t() funSR_t (const Point &, Parameters &)
-
typedef std::pair<GeomElement*, number_t> GeoNumPair
-
useful typedef for GeomElement class
alias of a pair of GeomElement* and a number
-
typedef int_t Index
-
typedef std::vector<number_t> Indexing
-
typedef int_t Int
-
alias for basic type
-
typedef long long int_t
-
typedef for integer
-
typedef PCollection<Interpolation> Interpolations
-
collection of Interpolation pointers
-
typedef Collection<int_t> Ints
-
collection of Int
-
typedef std::map<uvPair, SuBilinearForm>::iterator it_mublc
-
useful typedefs to BilinearForm class
-
typedef std::map<constUnknown*, SuLinearForm>::iterator it_mulc
-
useful typedefs to LinearForm class
-
typedef std::map<uvPair, SuTermMatrix*>::iterator it_mustm
-
useful aliases for TermMatrix class
-
typedef std::map<constUnknown*, SuTermVector*>::iterator it_mustv
-
typedef std::vector<OpkuvValPair>::iterator it_opkuvval
-
typedef std::vector<OpusValPair>::iterator it_opusval
-
typedef std::vector<OpuValPair>::iterator it_opuval
-
typedef std::vector<bfPair>::iterator it_vbfp
-
typedef std::vector<lfPair>::iterator it_vlfp
-
typedef std::vector<real_t>::iterator it_vr
-
typedef std::vector<Unknown*>::iterator it_vu
- complex_t() kerSC_t (const Point &, const Point &, Parameters &)
- Parameters &typedef Parameters &typedef Parameters &typedef Parameters &typedef real_t() kerSR_t (const Point &, const Point &, Parameters &)
-
typedef std::pair<BasicLinearForm*, complex_t> lfPair
-
useful typedefs to SuLinearForm class
- Parameters &typedef Parameters &typedef Parameters &typedef Matrix< complex_t > (funMC_t)(const Point &
- Parameters &typedef Parameters &typedef Matrix< real_t > (funMR_t)(const Point &
-
typedef MeshGenerator MeshPattern
-
typedef MonomialT Monomial
-
typedef number_t Number
-
typedef size_t number_t
-
typedef for size_t
-
typedef Collection<number_t> Numbers
-
collection of Number
-
typedef Ode45T<real_t> Ode45
-
typedef std::pair<xlifepp::KernelOperatorOnUnknowns*, xlifepp::complex_t> OpkuvValPair
-
typedef Parameters Options
-
typedef std::pair<OperatorOnUnknowns*, complex_t> OpusValPair
-
typedef std::pair<OperatorOnUnknown*, complex_t> OpuValPair
-
typedef Vector<real_t> (*par_fun)(const Point&, Parameters&, DiffOpType)
-
alias of real vector function
-
typedef Collection<Points> PointMatrix
-
collection of Points
-
typedef Collection<Point> Points
-
collection of Point
-
typedef PolyNodeT PolyNode
-
typedef PolynomialT Polynomial
-
typedef PolynomialBasisT PolynomialBasis
-
typedef PolynomialsBasisT PolynomialsBasis
-
typedef real_t Real
-
typedef std::pair<real_t, real_t> RealPair
-
typedef Vector<real_t> Reals
-
typedef Reals RealVector
-
alias for vector type
-
typedef RK4T<real_t> RK4
-
typedef PCollection<Space> Spaces
-
collection of Space pointers
-
typedef Ball Sphere
-
typedef string_t String
-
typedef Collection<string_t> Strings
-
collection of String
-
typedef PCollection<TestFunction> TestFunctions
-
collection of TestFunction pointers
-
typedef unsigned long long uint_t
-
typedef PCollection<Unknown> Unknowns
-
collection of Unknown pointers
- Parameters &typedef Vector< complex_t > (funVC_t)(const Point &
- const Point Parameters &typedef const Point Parameters &typedef const Point Parameters &typedef const Point Parameters &typedef Parameters &typedef Parameters &typedef Parameters &typedef Parameters &typedef Parameters &typedef Vector< Matrix< complex_t > > (vfunMC_t)(const Vector< Point > &
- const Point Parameters &typedef const Point Parameters &typedef const Point Parameters &typedef const Point Parameters &typedef Parameters &typedef Parameters &typedef Parameters &typedef Parameters &typedef Vector< Matrix< real_t > > (vfunMR_t)(const Vector< Point > &
- const Point Parameters &typedef const Point Parameters &typedef const Point Parameters &typedef const Point Parameters &typedef Vector< real_t > (vfunSR_t)(const Vector< Point > &
- const Point Parameters &typedef const Point Parameters &typedef const Point Parameters &typedef const Point Parameters &typedef Parameters &typedef Parameters &typedef Parameters &typedef Vector< Vector< complex_t > > (vfunVC_t)(const Vector< Point > &
- const Point Parameters &typedef const Point Parameters &typedef const Point Parameters &typedef const Point Parameters &typedef Parameters &typedef Parameters &typedef Vector< Vector< real_t > > (vfunVR_t)(const Vector< Point > &
-
typedef real_t (*VectorColoringRule)(const GeomElement&, const std::vector<Vector<real_t>>&)
-
alias of a function describing a GeomElement coloring rule
-
typedef std::vector<std::pair<complex_t, VectorEntry*>> VpacVEp
Enums
-
enum AccessType
-
access type of storage
Values:
-
enumerator _noAccess
-
enumerator _sym
-
enumerator _row
-
enumerator _col
-
enumerator _dual
-
enumerator _noAccess
-
enum AdjacentStatus
-
Values:
-
enumerator _notAdjacent
-
enumerator _adjacentByElement
-
enumerator _adjacentBySide
-
enumerator _adjacentBySideOfSide
-
enumerator _adjacentByVertex
-
enumerator _notAdjacent
-
enum AlgebraicOperator
-
Values:
-
enumerator _product
-
enumerator _innerProduct
-
enumerator _crossProduct
-
enumerator _contractedProduct
-
enumerator _product
-
enum Alignment
-
Values:
-
enumerator _centerAlignment
-
enumerator _leftAlignment
-
enumerator _rightAlignment
-
enumerator _centerAlignment
-
enum AngleUnitType
-
Values:
-
enumerator _deg
-
enumerator _rad
-
enumerator _deg
-
enum ArgType
-
Values:
-
enumerator _pointArg
-
enumerator _vectorOfPointArg
-
enumerator _pointArg
-
enum BoundaryCondionType
-
Helmholtz kernel in the strip ]-inf,+inf[x]0,h[ with either Dirichlet or Neumann boundary condition computed using modal expansion far from xs axis and accelerated image expansion close to the xs axis manage following parameters number_t bc: boundary type on both sides (0=Dirichlet,1=Neumann, …) real_t k: wave number real_t h: strip height (default 1) number_t N: maximum of terms in expansion (default 1000, must be greater than the number of propagative modes!) real_t l: abcissa separating image expansion and modal expansion (default h/10) real_t eps: threshold used to cut expansions , say |an|<eps, (default 1E-6)
Values:
-
enumerator _Dirichlet
-
enumerator _Neumann
-
enumerator _Dirichlet
-
enum CalType
-
type of calculation in Fock, Malyuzhinets function
Values:
-
enumerator _defaultCal
-
enumerator _filonCal
-
enumerator _trapezeCal
-
enumerator _approxCal
-
enumerator _interpCal
-
enumerator _laguerreCal
-
enumerator _adaptiveCal
-
enumerator _defaultCal
-
enum CloseNodeRule
-
Values:
-
enumerator _fmmCloseNodeRule
-
enumerator _fmmCloseNodeRule
-
enum ClusteringMethod
-
Values:
-
enumerator _regularBisection
-
enumerator _boundingBoxBisection
-
enumerator _cardinalityBisection
-
enumerator _uniformKdtree
-
enumerator _nonuniformKdtree
-
enumerator _regularBisection
-
enum ComparisonOperator
-
ComparisonFunction class handling expresion t opc1 a1 ao t opc2 a2 ao … where opc1, opc2, … are one of =, !=, <, > , >=, <= ao is one of && or || (the same in expression) a1, a2, … are objects of same type, supporting comparison operator let cop be a ComparisonFunction object cof(t) return the bool value of t opc1 a opao t opc2 2
Values:
-
enumerator _noComparison
-
enumerator _isEqual
-
enumerator _isNotEqual
-
enumerator _isLess
-
enumerator _isGreater
-
enumerator _isLessEqual
-
enumerator _isGreaterEqual
-
enumerator _noComparison
-
enum ComputationInfo
-
Enum for reporting the status of a computation.
Values:
-
enumerator _success
-
Computation was successful.
-
enumerator _numericalIssue
-
The provided data did not satisfy the prerequisites.
-
enumerator _noConvergence
-
Iterative procedure did not converge.
-
enumerator _invalidInput
-
The inputs are invalid, or the algorithm has been improperly called.
When assertions are enabled, such errors trigger an assert.
-
enumerator _success
-
enum ComputationType
-
type of computation
Values:
-
enumerator _undefComputation
-
enumerator _FEComputation
-
enumerator FEComputation
-
enumerator _IEComputation
-
enumerator IEComputation
-
enumerator _SPComputation
-
enumerator SPComputation
-
enumerator _FESPComputation
-
enumerator FESPComputation
-
enumerator _IESPComputation
-
enumerator IESPComputation
-
enumerator _FEextComputation
-
enumerator FEextComputation
-
enumerator _IEextComputation
-
enumerator IEextComputation
-
enumerator _IEHmatrixComputation
-
enumerator IEHmatrixComputation
-
enumerator _DGComputation
-
enumerator DGComputation
-
enumerator _undefComputation
-
enum ComputeIntgFlag
-
Values:
-
enumerator _computeI1
-
enumerator _computeI2
-
enumerator _computeBoth
-
enumerator _computeI1
-
enum ConstCastStorage
-
Values:
-
enumerator _constCastSt
-
enumerator _constCastSt
-
enum ContinuityOrder
-
continuity order C0 : only geometric continuity, C1 : continuity of the first derivative all along the Curve, C2 : continuity of the second derivative all along the Curve, C3 : continuity of the third derivative all along the Curve, G1 : tangency continuity all along the Curve, G2 : curvature continuity all along the Curve, Cinf: the order of continuity is infinite.
Values:
-
enumerator _notRegular
-
enumerator _regC0
-
enumerator _regC1
-
enumerator _regC2
-
enumerator _regC3
-
enumerator _regG1
-
enumerator _regG2
-
enumerator _regCinf
-
enumerator _notRegular
-
enum ConvAngleType
-
Values:
-
enumerator _noAngleConversion
-
enumerator _degToRad
-
enumerator _radToDeg
-
enumerator _noAngleConversion
-
enum CrackType
-
type of crack
Values:
-
enumerator _noCrack
-
enumerator _openCrack
-
enumerator _closedCrack
-
enumerator _noCrack
-
enum Ctype
-
Values:
-
enumerator _rm
-
enumerator rm
-
enumerator _shem
-
enumerator shem
-
enumerator _rm
-
enum DataAccess
-
Values:
-
enumerator _copy
-
enumerator _view
-
enumerator _copy
-
enum DiffComputation
-
Values:
-
enumerator _IdComputation
-
enumerator _funComputation
-
enumerator _invComputation
-
enumerator _lengthComputation
-
enumerator _lengthsComputation
-
enumerator _curvatureComputation
-
enumerator _curvaturesComputation
-
enumerator _curabcComputation
-
enumerator _curabcsComputation
-
enumerator _normalComputation
-
enumerator _tangentComputation
-
enumerator _IdComputation
-
enum DiffOpType
-
type fo differential operator
Values:
-
enumerator _id
-
enumerator _d0
-
enumerator _dt
-
enumerator _d1
-
enumerator _dx
-
enumerator _d2
-
enumerator _dy
-
enumerator _d3
-
enumerator _dz
-
enumerator _grad
-
enumerator _nabla
-
enumerator _div
-
enumerator _curl
-
enumerator _rot
-
enumerator _gradS
-
enumerator _nablaS
-
enumerator _divS
-
enumerator _curlS
-
enumerator _rotS
-
enumerator _scurlS
-
enumerator _srotS
-
enumerator _ntimes
-
enumerator _timesn
-
enumerator _ndot
-
enumerator _ncross
-
enumerator _ncrossncross
-
enumerator _ndotgrad
-
enumerator _ndiv
-
enumerator _ncrosscurl
-
enumerator _ncrossgrad
-
enumerator _ncrossntimes
-
enumerator _timesncrossn
-
enumerator _ntimesndot
-
enumerator _divG
-
enumerator _gradG
-
enumerator _nablaG
-
enumerator _curlG
-
enumerator _rotG
-
enumerator _epsilon
-
enumerator _epsilonG
-
enumerator _epsilonR
-
enumerator _voigtToM
-
enumerator _grad_x
-
enumerator _nabla_x
-
enumerator _grad_y
-
enumerator _nabla_y
-
enumerator _grad_xy
-
enumerator _nabla_xy
-
enumerator _div_x
-
enumerator _div_y
-
enumerator _div_xy
-
enumerator _curl_x
-
enumerator _rot_x
-
enumerator _curl_y
-
enumerator _rot_y
-
enumerator _curl_xy
-
enumerator _rot_xy
-
enumerator _ntimes_x
-
enumerator _timesn_x
-
enumerator _ndot_x
-
enumerator _ncross_x
-
enumerator _ncrossncross_x
-
enumerator _ncrossntimes_x
-
enumerator _timesncrossn_x
-
enumerator _ndotgrad_x
-
enumerator _ndiv_x
-
enumerator _ncrosscurl_x
-
enumerator _ntimes_y
-
enumerator _timesn_y
-
enumerator _ndot_y
-
enumerator _ncross_y
-
enumerator _ncrossncross_y
-
enumerator _ncrossntimes_y
-
enumerator _timesncrossn_y
-
enumerator _ndotgrad_y
-
enumerator _ndiv_y
-
enumerator _ncrosscurl_y
-
enumerator _ndotgrad_xy
-
enumerator _nxdotny_times
-
enumerator _nxcrossny_dot
-
enumerator _nycrossnx_dot
-
enumerator _nxcrossny_cross
-
enumerator _nycrossnx_cross
-
enumerator _nxcrossny_times
-
enumerator _nycrossnx_times
-
enumerator _dt2
-
enumerator _d11
-
enumerator _dxx
-
enumerator _d22
-
enumerator _dyy
-
enumerator _d33
-
enumerator _dzz
-
enumerator _d12
-
enumerator _dxy
-
enumerator _d21
-
enumerator _dyx
-
enumerator _d13
-
enumerator _dxz
-
enumerator _d31
-
enumerator _dzx
-
enumerator _d23
-
enumerator _dyz
-
enumerator _d32
-
enumerator _dzy
-
enumerator _lap
-
enumerator _lapG
-
enumerator _d2G
-
enumerator _dt3
-
enumerator _d111
-
enumerator _dxxx
-
enumerator _d222
-
enumerator _dyyy
-
enumerator _d333
-
enumerator _dzzz
-
enumerator _d112
-
enumerator _dxxy
-
enumerator _d113
-
enumerator _dxxz
-
enumerator _d122
-
enumerator _dxyy
-
enumerator _d123
-
enumerator _dxyz
-
enumerator _d133
-
enumerator _dxzz
-
enumerator _d223
-
enumerator _dyyz
-
enumerator _d233
-
enumerator _dyzz
-
enumerator _id
-
enum DimensionType
-
space or mesh dimension
Values:
-
enumerator _undefDim
-
enumerator _1D
-
enumerator _2D
-
enumerator _3D
-
enumerator _nD
-
enumerator _undefDim
-
enum DofCompatibility
-
types of compatibility rule to applied to side dofs _noDofCompatibility : no rule to apply (case of Lagrange dofs) _signDofCompatibility: sign correction due to normal/tangent vector orientation (case of Hcurl, Hdiv element)
Values:
-
enumerator _noDofCompatibility
-
enumerator _signDofCompatibility
-
enumerator _noDofCompatibility
-
enum DofLocalization
-
Values:
-
enumerator _nowhere
-
enumerator _onVertex
-
enumerator _onEdge
-
enumerator _onFace
-
enumerator _onElement
-
enumerator _nowhere
-
enum DofType
-
DoF type.
Values:
-
enumerator _feDof
-
enumerator _spDof
-
enumerator _otherDof
-
enumerator _feDof
-
enum DomainExtensionType
-
type of extension if an extended domain
Values:
-
enumerator _noExtension
-
enumerator _vertexExtension
-
enumerator _sideExtension
-
enumerator _ficticiousExtension
-
enumerator _noExtension
-
enum DomainType
-
type of domain
Values:
-
enumerator _undefDomain
-
enumerator _analyticDomain
-
enumerator _meshDomain
-
enumerator _compositeDomain
-
enumerator _pointsDomain
-
enumerator _undefDomain
-
enum ECMethod
-
method to translate essential condition to constraints
Values:
-
enumerator _undefECMethod
-
enumerator _dofEC
-
enumerator _internalNodeEC
-
enumerator _momentEC
-
enumerator _undefECMethod
-
enum EcType
-
type of essential condition
Values:
-
enumerator _undefEcType
-
enumerator _DirichletEc
-
enumerator _transmissionEc
-
enumerator _crackEc
-
enumerator _periodicEc
-
enumerator _meanEc
-
enumerator _lfEc
-
enumerator _NeumannEc
-
enumerator _FourierEc
-
enumerator _undefEcType
-
enum EigenComputationalMode
-
computational mode for eigen solvers
Values:
-
enumerator _davidson
-
enumerator _krylovSchur
-
enumerator _buckling
-
enumerator _cayley
-
enumerator _cshiftRe
-
enumerator _cshiftIm
-
enumerator _davidson
-
enum EigenSolverMode
-
type of eigen problems
Values:
-
enumerator _eigenValueOnly
-
Used in SelfAdjointEigenSolver and GeneralizedSelfAdjointEigenSolver to specify that only the eigenvalues are to be computed and not the eigenvectors.
-
enumerator _computeEigenVector
-
Used in SelfAdjointEigenSolver and GeneralizedSelfAdjointEigenSolver to specify that both the eigenvalues and the eigenvectors are to be computed.
-
enumerator _eigVecMask
-
enumerator _Ax_lBx
-
Used in GeneralizedSelfAdjointEigenSolver to indicate that it should solve the generalized eigenproblem \( Ax = \lambda B x \).
-
enumerator _ABx_lx
-
Used in GeneralizedSelfAdjointEigenSolver to indicate that it should solve the generalized eigenproblem \( ABx = \lambda x \).
-
enumerator _BAx_lx
-
Used in GeneralizedSelfAdjointEigenSolver to indicate that it should solve the generalized eigenproblem \( BAx = \lambda x \).
-
enumerator _genEigMask
-
enumerator _eigenValueOnly
-
enum EigenSolverType
-
Eigen solvers.
Values:
-
enumerator _intern
-
enumerator _arpack
-
enumerator _intern
-
enum EigenSortKind
-
Possible choices to sort the eigenvalues.
Values:
-
enumerator _decr_module
-
enumerator _decr_realpart
-
enumerator _decr_imagpart
-
enumerator _incr_module
-
enumerator _incr_realpart
-
enumerator _incr_imagpart
-
enumerator _decr_module
-
enum EllipsoidParametrizationType
-
Values:
-
enumerator _thetaphi
-
enumerator _stereographic
-
enumerator _bistereographic
-
enumerator _thetaphi
-
enum FactorizationType
-
factorization of matrices
Values:
-
enumerator _noFactorization
-
enumerator _lu
-
enumerator _ldlt
-
enumerator _ldlstar
-
enumerator _llt
-
enumerator _llstar
-
enumerator _qr
-
enumerator _ilu
-
enumerator _ildlt
-
enumerator _ildlstar
-
enumerator _illt
-
enumerator _illstar
-
enumerator _umfpack
-
enumerator _noFactorization
-
enum FEMapType
-
types of map applied to shape functions of reference element standard map : J{-t} Lagrange FE contravariantPiolaMap: J*J{-t}/|J| div conforming FE covariantPiolaMap : J{-t}*J{-t} curl conforming FE MorleyMap : see Morley element ArgyrisMap : see Argyris element
Values:
-
enumerator _standardMap
-
enumerator _contravariantPiolaMap
-
enumerator _covariantPiolaMap
-
enumerator _MorleyMap
-
enumerator _ArgyrisMap
-
enumerator _standardMap
-
enum FESubType
-
finite element subfamily
Values:
-
enumerator _standard
-
enumerator standard
-
enumerator _GaussLobattoPoints
-
enumerator GaussLobattoPoints
-
enumerator _firstFamily
-
enumerator firstFamily
-
enumerator _secondFamily
-
enumerator secondFamily
-
enumerator _standard
-
enum FEType
-
finite element family
Values:
-
enumerator _Lagrange
-
enumerator Lagrange
-
enumerator _Hermite
-
enumerator Hermite
-
enumerator _CrouzeixRaviart
-
enumerator CrouzeixRaviart
-
enumerator _Nedelec
-
enumerator Nedelec
-
enumerator _RaviartThomas
-
enumerator RaviartThomas
-
enumerator _NedelecFace
-
enumerator NedelecFace
-
enumerator _NedelecEdge
-
enumerator NedelecEdge
-
enumerator _BuffaChristiansen
-
enumerator BuffaChristiansen
-
enumerator _Morley
-
enumerator Morley
-
enumerator _Argyris
-
enumerator Argyris
-
enumerator _Lagrange
-
enum FieldPart
-
Values:
-
enumerator _totalField
-
enumerator _diffractedField
-
enumerator _wedgeField
-
enumerator _totalField
-
enum FieldType
-
Values:
-
enumerator _noFieldType
-
enumerator _terminator
-
enumerator _lightOP
-
enumerator _lightFock
-
enumerator _shadowFock
-
enumerator _creeping
-
enumerator _focal
-
enumerator _noFieldType
-
enum FuncFormType
-
type of function (C++ function or TermVector)
Values:
-
enumerator _analytical
-
enumerator _interpolated
-
enumerator _analytical
-
enum FunctionPart
-
regular/singular part
Values:
-
enumerator _allFunction
-
enumerator allFunction
-
enumerator _regularPart
-
enumerator regularPart
-
enumerator _singularPart
-
enumerator singularPart
-
enumerator _allFunction
-
enum FunctType
-
type of functions (one Point variable, or two)
Values:
-
enumerator _function
-
enumerator _kernel
-
enumerator _function
-
enum GaussianGenerator
-
Values:
-
enumerator _BoxMullerGenerator
-
enumerator _MarsagliaGenerator
-
enumerator _BoxMullerGenerator
-
enum GeodesicType
-
Values:
-
enumerator _geodesic
-
enumerator _parametrizedGeodesic
-
enumerator _meshedGeodesic
-
enumerator _analyticGeodesic
-
enumerator _geometricGeodesic
-
enumerator _compositeGeodesic
-
enumerator _geodesic
-
enum GeometricEndShape
-
used for RevTrunk class in lib geometry
Values:
-
enumerator _gesNone
-
enumerator gesNone
-
enumerator _gesFlat
-
enumerator gesFlat
-
enumerator _gesCone
-
enumerator gesCone
-
enumerator _gesEllipsoid
-
enumerator gesEllipsoid
-
enumerator _gesSphere
-
enumerator gesSphere
-
enumerator _gesNone
-
enum GeometryRelationType
-
enum to describe the relative position of 2 geometries
Values:
-
enumerator _inside
-
enumerator _contains
-
enumerator _intersects
-
enumerator _outside
-
enumerator _inside
-
enum GeoOperation
-
Values:
-
enumerator _noneGeOp
-
enumerator _plusGeOp
-
enumerator _minusGeOp
-
enumerator _commonGeOp
-
enumerator _loopGeOp
-
enumerator _extrusionGeOp
-
enumerator _noneGeOp
-
enum Gtype
-
Values:
-
enumerator dual
-
enumerator nodal
-
enumerator dual
-
enum HMAdmissibilityRule
-
Values:
-
enumerator _noRule
-
enumerator _boxesRule
-
enumerator _noRule
-
enum HMApproximationMethod
-
Enumerated list of available HMatrix approximation method.
Values:
-
enumerator _noHMApproximation
-
enumerator _svdCompression
-
enumerator _rsvdCompression
-
enumerator _r3svdCompression
-
enumerator _acaFull
-
enumerator _acaPartial
-
enumerator _acaPlus
-
enumerator _noHMApproximation
-
enum HMatrixMethod
-
Values:
-
enumerator _standardHM
-
enumerator _denseHM
-
enumerator _standardHM
-
enum IntegrationMethodType
-
integration methods
Values:
-
enumerator _undefIM
-
enumerator _quadratureIM
-
enumerator _polynomialIM
-
enumerator _productIM
-
enumerator _LenoirSalles2dIM
-
enumerator LenoirSalles2d
-
enumerator _LenoirSalles3dIM
-
enumerator LenoirSalles3d
-
enumerator _LenoirSalles2dIR
-
enumerator _LenoirSalles3dIR
-
enumerator _SauterSchwabIM
-
enumerator SauterSchwab
-
enumerator _SauterSchwabSymIM
-
enumerator SauterSchwabSym
-
enumerator _DuffyIM
-
enumerator Duffy
-
enumerator _DuffySymIM
-
enumerator Duffy_sym
-
enumerator _HMatrixIM
-
enumerator H_Matrix
-
enumerator _CollinoIM
-
enumerator _FilonIM
-
enumerator _undefIM
-
enum InterpolationType
-
interpolation type :
P0, … P10, Q0, … Q10 stands for Lagrange FE interpolation
name nomenclature of edge/face element 2D (triangle) 3D (tetrahedron) FE face type (Hdiv) Raviart-Thomas(RT) Nedelec Face first family (NF1) Brezzi-Douglas-Marini(BDM) Nedelec Face second family(NF2) FE edge type (Hrot) Nedelec first family (N1) Nedelec Edge first family (NE1) Nedelec second family(N2) Nedelec Edge second family(NE2)
Note
according to the previous table, there is an equivalence between 2D and 3D shortname: for instance NF_1 in 2D is understood as RT_1 and RT_1 in 3D is understood as NF_1
Values:
-
enumerator _P0
-
enumerator P0
-
enumerator _P1
-
enumerator P1
-
enumerator _P2
-
enumerator P2
-
enumerator _P3
-
enumerator P3
-
enumerator _P4
-
enumerator P4
-
enumerator _P5
-
enumerator P5
-
enumerator _P6
-
enumerator P6
-
enumerator _P7
-
enumerator P7
-
enumerator _P8
-
enumerator P8
-
enumerator _P9
-
enumerator P9
-
enumerator _P10
-
enumerator P10
-
enumerator _P1BubbleP3
-
enumerator P1BubbleP3
-
enumerator _CR
-
enumerator CR
-
enumerator _Q0
-
enumerator Q0
-
enumerator _Q1
-
enumerator Q1
-
enumerator _Q2
-
enumerator Q2
-
enumerator _Q3
-
enumerator Q3
-
enumerator _Q4
-
enumerator Q4
-
enumerator _Q5
-
enumerator Q5
-
enumerator _Q6
-
enumerator Q6
-
enumerator _Q7
-
enumerator Q7
-
enumerator _Q8
-
enumerator Q8
-
enumerator _Q9
-
enumerator Q9
-
enumerator _Q10
-
enumerator Q10
-
enumerator _RT_1
-
enumerator RT_1
-
enumerator _NF1_1
-
enumerator NF1_1
-
enumerator _RT_2
-
enumerator RT_2
-
enumerator _NF1_2
-
enumerator NF1_2
-
enumerator _RT_3
-
enumerator RT_3
-
enumerator _NF1_3
-
enumerator NF1_3
-
enumerator _RT_4
-
enumerator RT_4
-
enumerator _NF1_4
-
enumerator NF1_4
-
enumerator _RT_5
-
enumerator RT_5
-
enumerator _NF1_5
-
enumerator NF1_5
-
enumerator _BDM_1
-
enumerator BDM_1
-
enumerator _NF2_1
-
enumerator NF2_1
-
enumerator _BDM_2
-
enumerator BDM_2
-
enumerator _NF2_2
-
enumerator NF2_2
-
enumerator _BDM_3
-
enumerator BDM_3
-
enumerator _NF2_3
-
enumerator NF2_3
-
enumerator _BDM_4
-
enumerator BDM_4
-
enumerator _NF2_4
-
enumerator NF2_4
-
enumerator _BDM_5
-
enumerator BDM_5
-
enumerator _NF2_5
-
enumerator NF2_5
-
enumerator _N1_1
-
enumerator N1_1
-
enumerator _NE1_1
-
enumerator NE1_1
-
enumerator _N1_2
-
enumerator N1_2
-
enumerator _NE1_2
-
enumerator NE1_2
-
enumerator _N1_3
-
enumerator N1_3
-
enumerator _NE1_3
-
enumerator NE1_3
-
enumerator _N1_4
-
enumerator N1_4
-
enumerator _NE1_4
-
enumerator NE1_4
-
enumerator _N1_5
-
enumerator N1_5
-
enumerator _NE1_5
-
enumerator NE1_5
-
enumerator _N2_1
-
enumerator N2_1
-
enumerator _NE2_1
-
enumerator NE2_1
-
enumerator _N2_2
-
enumerator N2_2
-
enumerator _NE2_2
-
enumerator NE2_2
-
enumerator _N2_3
-
enumerator N2_3
-
enumerator _NE2_3
-
enumerator NE2_3
-
enumerator _N2_4
-
enumerator N2_4
-
enumerator _NE2_4
-
enumerator NE2_4
-
enumerator _N2_5
-
enumerator N2_5
-
enumerator _NE2_5
-
enumerator NE2_5
-
enum IOFormat
-
I/O mesh format.
Values:
-
enumerator _undefFormat
-
enumerator _vtk
-
enumerator vtk
-
enumerator _vtu
-
enumerator vtu
-
enumerator _msh
-
enumerator msh
-
enumerator _geo
-
enumerator geo
-
enumerator _mel
-
enumerator mel
-
enumerator _ply
-
enumerator ply
-
enumerator _medit
-
enumerator medit
-
enumerator _matlab
-
enumerator matlab
-
enumerator _raw
-
enumerator raw
-
enumerator _xyzv
-
enumerator xyzv
-
enumerator _undefFormat
-
enum Iptype
-
Values:
-
enumerator _grow
-
enumerator grow
-
enumerator _iprandom
-
enumerator iprandom
-
enumerator _grow
-
enum IterativeSolverType
-
Iterative solvers.
Values:
-
enumerator _noIterativeSolver
-
enumerator _cg
-
enumerator _cgs
-
enumerator _qmr
-
enumerator _bicg
-
enumerator _bicgstab
-
enumerator _gmres
-
enumerator _sor
-
enumerator _ssor
-
enumerator _noIterativeSolver
-
enum JumpType
-
type of jump
Values:
-
enumerator _nojump
-
enumerator _jump
-
enumerator _mean
-
enumerator _nojump
-
enum KeepStatus
-
Values:
-
enumerator _keep
-
enumerator _nokeep
-
enumerator _keep
-
enum KernelType
-
Values:
-
enumerator _generalKernel
-
enumerator _tensorKernel
-
enumerator _generalKernel
-
enum Language
-
multilingual messages
Values:
-
enumerator _en
-
enumerator en
-
enumerator english
-
enumerator _fr
-
enumerator fr
-
enumerator francais
-
enumerator _de
-
enumerator de
-
enumerator deutsch
-
enumerator _es
-
enumerator es
-
enumerator espanol
-
enumerator _nbLanguages
-
enumerator _en
-
enum LinearFormType
-
type of linear form
Values:
-
enumerator _undefLf
-
enumerator _intg
-
enumerator _doubleIntg
-
enumerator _bilinearAsLinear
-
enumerator _linearCombination
-
enumerator _composedLf
-
enumerator _explicitLf
-
enumerator _userLf
-
enumerator _undefLf
-
enum MatrixApproximationType
-
Values:
-
enumerator _lowRankApproximation
-
enumerator _fmmApproximation
-
enumerator _lowRankApproximation
-
enum MatrixConditioning
-
Enumerated list of matrix properties regarding invertibility.
Values:
-
enumerator _well_conditioned_matrix
-
enumerator _bad_conditioned_matrix
-
enumerator _non_invertible_matrix
-
enumerator _well_conditioned_matrix
-
enum MatrixPart
-
part of matrices
Values:
-
enumerator _all
-
enumerator _lower
-
enumerator _upper
-
enumerator _all
-
enum MemoryUnit
-
memory units
Values:
-
enumerator _byte
-
enumerator _kilobyte
-
enumerator _megabyte
-
enumerator _gigabyte
-
enumerator _terabyte
-
enumerator _byte
-
enum MeshGenerator
-
enum to select the mesh generator/algorithm
Values:
-
enumerator _defaultGenerator
-
enumerator _defaultPattern
-
enumerator _structured
-
enumerator structured
-
enumerator _subdiv
-
enumerator subdiv
-
enumerator _gmsh
-
enumerator gmsh
-
enumerator _unstructured
-
enumerator unstructured
-
enumerator _gmshOC
-
enumerator gmshOC
-
enumerator _fromParametrization
-
enumerator fromParametrization
-
enumerator _defaultGenerator
-
enum MeshOption
-
enum to select the mesh generator/algorithm
Values:
-
enumerator _defaultMeshOption
-
enumerator _unstructuredMesh
-
enumerator unstructuredMesh
-
enumerator _structuredMesh
-
enumerator structuredMesh
-
enumerator _leftSplit
-
enumerator leftSplit
-
enumerator _rightSplit
-
enumerator rightSplit
-
enumerator _randomSplit
-
enumerator randomSplit
-
enumerator _alternateSplit
-
enumerator alternateSplit
-
enumerator _crossSplit
-
enumerator crossSplit
-
enumerator _defaultMeshOption
-
enum MsgEigenType
-
Enumerated list of available message types recognized by the eigensolvers.
These message types are also used with verboseLevel to print out warning (debugging) info.
Values:
-
enumerator _errorsEigen
-
Errors [ always printed ].
-
enumerator _warningsEigen
-
Internal warnings.
-
enumerator _iterationDetailsEigen
-
Approximate eigenvalues, errors.
-
enumerator _orthoDetailsEigen
-
Orthogonalization/orthonormalization details.
-
enumerator _finalSummaryEigen
-
Final computational summary.
-
enumerator _timingDetailsEigen
-
Timing details.
-
enumerator _statusTestDetailsEigen
-
Status test details.
-
enumerator _debugEigen
-
Debugging information.
-
enumerator _errorsEigen
-
enum MsgType
-
Message types enumeration.
Values:
-
enumerator _error
-
enumerator _warning
-
enumerator _info
-
enumerator _error
-
enum Objtype
-
Objtype.
Values:
-
enumerator _cut
-
enumerator cut
-
enumerator _vol
-
enumerator vol
-
enumerator _cut
-
enum OCShapeType
-
Open Cascade shape.
Values:
-
enumerator _undefOCShape
-
enumerator _OCSolid
-
enumerator _solid
-
enumerator _OCShell
-
enumerator _shell
-
enumerator _OCFace
-
enumerator _face
-
enumerator _OCWire
-
enumerator _wire
-
enumerator _OCEdge
-
enumerator _edge
-
enumerator _OCVertex
-
enumerator _vertex
-
enumerator _undefOCShape
-
enum OrientationType
-
orientation type for a spacedim-1 domain
Values:
-
enumerator _undefOrientationType
-
enumerator _towardsInfinite
-
enumerator towardsInfinite
-
enumerator _outwardsInfinite
-
enumerator outwardsInfinite
-
enumerator _towardsDomain
-
enumerator towardsDomain
-
enumerator _outwardsDomain
-
enumerator outwardsDomain
-
enumerator _undefOrientationType
-
enum ParameterKey
-
used for GeomParameter class in lib geometry
Values:
-
enumerator _pk_none
-
enumerator _pk_lang
-
enumerator _pk_verbose
-
enumerator _pk_nbThreads
-
enumerator _pk_trackingMode
-
enumerator _pk_pushpop
-
enumerator _pk_traceMemory
-
enumerator _pk_isLogged
-
enumerator _pk_varnames
-
enumerator _pk_vertices
-
enumerator _pk_faces
-
enumerator _pk_center
-
enumerator _pk_center1
-
enumerator _pk_center2
-
enumerator _pk_apogee
-
enumerator _pk_origin
-
enumerator _pk_apex
-
enumerator _pk_v1
-
enumerator _pk_v2
-
enumerator _pk_v3
-
enumerator _pk_v4
-
enumerator _pk_v5
-
enumerator _pk_v6
-
enumerator _pk_v7
-
enumerator _pk_v8
-
enumerator _pk_xmin
-
enumerator _pk_xmax
-
enumerator _pk_ymin
-
enumerator _pk_ymax
-
enumerator _pk_zmin
-
enumerator _pk_zmax
-
enumerator _pk_spline
-
enumerator _pk_spline_type
-
enumerator _pk_spline_subtype
-
enumerator _pk_degree
-
enumerator _pk_spline_BC
-
enumerator _pk_tension
-
enumerator _pk_spline_parametrization
-
enumerator _pk_weights
-
enumerator _pk_tangent_0
-
enumerator _pk_tangent_1
-
enumerator _pk_nbu
-
enumerator _pk_tmin
-
enumerator _pk_tmax
-
enumerator _pk_parametrization
-
enumerator _pk_partitioning
-
enumerator _pk_nbParts
-
enumerator _pk_shapePartition
-
enumerator _pk_partmesh
-
enumerator _pk_ncommon
-
enumerator _pk_ptype
-
enumerator _pk_objtype
-
enumerator _pk_ctype
-
enumerator _pk_iptype
-
enumerator _pk_rtype
-
enumerator _pk_savedoms
-
enumerator _pk_repsortie
-
enumerator _pk_length
-
enumerator _pk_xlength
-
enumerator _pk_ylength
-
enumerator _pk_zlength
-
enumerator _pk_radius
-
enumerator _pk_radius1
-
enumerator _pk_radius2
-
enumerator _pk_xradius
-
enumerator _pk_yradius
-
enumerator _pk_zradius
-
enumerator _pk_basis
-
enumerator _pk_scale
-
enumerator _pk_dir
-
enumerator _pk_axis
-
enumerator _pk_normal
-
enumerator _pk_end_shape
-
enumerator _pk_end1_shape
-
enumerator _pk_end2_shape
-
enumerator _pk_end_distance
-
enumerator _pk_end1_distance
-
enumerator _pk_end2_distance
-
enumerator _pk_nnodes
-
enumerator _pk_hsteps
-
enumerator _pk_base_names
-
enumerator _pk_domain_name
-
enumerator _pk_side_names
-
enumerator _pk_naming_domain
-
enumerator _pk_naming_section
-
enumerator _pk_naming_side
-
enumerator _pk_init_transformation
-
enumerator _pk_layers
-
enumerator _pk_nbsubdomains
-
enumerator _pk_nboctants
-
enumerator _pk_angle
-
enumerator _pk_angle1
-
enumerator _pk_angle2
-
enumerator _pk_type
-
enumerator _pk_shape
-
enumerator _pk_generator
-
enumerator _pk_pattern
-
enumerator _pk_split_direction
-
enumerator _pk_refinement_depth
-
enumerator _pk_dim
-
enumerator _pk_domain
-
enumerator _pk_extension_domain
-
enumerator _pk_extension_domain_u
-
enumerator _pk_extension_domain_v
-
enumerator _pk_FE_type
-
enumerator _pk_FE_subtype
-
enumerator _pk_Sobolev_type
-
enumerator _pk_order
-
enumerator _pk_interpolation
-
enumerator _pk_optimizeNumbering
-
enumerator _pk_notOptimizeNumbering
-
enumerator _pk_withLocateData
-
enumerator _pk_withoutLocateData
-
enumerator _pk_basis_dim
-
enumerator _pk_rank
-
enumerator _pk_method
-
enumerator _pk_quad
-
enumerator _pk_quad1
-
enumerator _pk_quad2
-
enumerator _pk_order1
-
enumerator _pk_order2
-
enumerator _pk_bound
-
enumerator _pk_isogeo
-
enumerator _pk_symmetry
-
enumerator _pk_computation
-
enumerator _pk_function_part
-
enumerator _pk_compute
-
enumerator _pk_notCompute
-
enumerator _pk_assembled
-
enumerator _pk_unassembled
-
enumerator _pk_storage
-
enumerator _pk_nodal
-
enumerator _pk_reduction
-
enumerator _pk_pseudoReductionMethod
-
enumerator _pk_realReductionMethod
-
enumerator _pk_penalizationReductionMethod
-
enumerator _pk_maxIt
-
enumerator _pk_krylovDim
-
enumerator _pk_solver
-
enumerator _pk_tolerance
-
enumerator _pk_convToStd
-
enumerator _pk_forceNonSym
-
enumerator _pk_ncv
-
enumerator _pk_nev
-
enumerator _pk_mode
-
enumerator _pk_sigma
-
enumerator _pk_sort
-
enumerator _pk_which
-
enumerator _pk_omega
-
enumerator _pk_name
-
enumerator _pk_format
-
enumerator _pk_data_name
-
enumerator _pk_aFilePerDomain
-
enumerator _pk_aUniqueFile
-
enumerator _pk_encodingFileName
-
enumerator _pk_noEncodingFileName
-
enumerator _pk_transformation
-
enumerator _pk_suffix
-
enumerator _pk_none
-
enum Partitioning
-
type of partitioning
Values:
-
enumerator _nonePartition
-
enumerator _linearPartition
-
enumerator _splinePartition
-
enumerator _nonePartition
-
enum PolynomialSpace
-
Values:
-
enumerator _Pk
-
enumerator _PHk
-
enumerator _Qk
-
enumerator _Qks
-
enumerator _Rk
-
enumerator _SHk
-
enumerator _Dk
-
enumerator _DQk
-
enumerator _DQ2k
-
enumerator _DQ3k
-
enumerator _Pk
-
enum PreconditionerType
-
preconditioner
Values:
-
enumerator _noPrec
-
enumerator _luPrec
-
enumerator _ldltPrec
-
enumerator _ldlstarPrec
-
enumerator _ssorPrec
-
enumerator _diagPrec
-
enumerator _productPrec
-
enumerator _iluPrec
-
enumerator _ildltPrec
-
enumerator _ildlstarPrec
-
enumerator _illtPrec
-
enumerator _userPrec
-
enumerator _noPrec
-
enum ProjectionType
-
Values:
-
enumerator _noProjection
-
enumerator _givenProjection
-
enumerator _dotnProjection
-
enumerator _crossnProjection
-
enumerator _noProjection
-
enum ProjectorType
-
type of space projectors
Values:
-
enumerator _noProjectorType
-
enumerator _userProjector
-
enumerator userProjector
-
enumerator _L2Projector
-
enumerator L2Projector
-
enumerator _H1Projector
-
enumerator H1Projector
-
enumerator _H10Projector
-
enumerator H10Projector
-
enumerator _noProjectorType
-
enum Ptype
-
Ptype.
Values:
-
enumerator _rec
-
enumerator rec
-
enumerator recursive
-
enumerator _kway
-
enumerator kway
-
enumerator _rec
-
enum QuadRule
-
quadrature rules
Values:
-
enumerator _defaultRule
-
enumerator defaultQuadrature
-
enumerator _GaussLegendreRule
-
enumerator GaussLegendre
-
enumerator _symmetricalGaussRule
-
enumerator symmetricalGauss
-
enumerator _GaussLobattoRule
-
enumerator GaussLobatto
-
enumerator _nodalRule
-
enumerator nodalQuadrature
-
enumerator _miscRule
-
enumerator miscQuadrature
-
enumerator _GrundmannMollerRule
-
enumerator GrundmannMoller
-
enumerator _doubleQuadrature
-
enumerator _evenGaussLegendreRule
-
enumerator _evenGaussLobattoRule
-
enumerator _defaultRule
-
enum ReductionMethodType
-
reduction method to deal with essential conditions
Values:
-
enumerator _noReduction
-
enumerator _pseudoReduction
-
enumerator _realReduction
-
enumerator _penalizationReduction
-
enumerator _dualReduction
-
enumerator _noReduction
-
enum Rtype
-
Values:
-
enumerator _fm
-
enumerator fm
-
enumerator _greedy
-
enumerator greedy
-
enumerator _sep2sided
-
enumerator sep2sided
-
enumerator _sep1sided
-
enumerator sep1sided
-
enumerator _fm
-
enum SetOperationType
-
type of composition of domains
Values:
-
enumerator _union
-
enumerator _intersection
-
enumerator _union
-
enum ShapesType
-
geometrical shapes
Values:
-
enumerator _noShapes
-
enumerator _fromFiles
-
enumerator _points
-
enumerator _segments
-
enumerator segments
-
enumerator _triangles
-
enumerator triangles
-
enumerator _quadrangles
-
enumerator quadrangles
-
enumerator _tetrahedra
-
enumerator tetrahedra
-
enumerator _hexahedra
-
enumerator hexahedra
-
enumerator _prisms
-
enumerator prisms
-
enumerator _pyramids
-
enumerator pyramids
-
enumerator _ellArcs
-
enumerator _circArcs
-
enumerator _parametrizedArcs
-
enumerator _polygons
-
enumerator _parallelograms
-
enumerator _rectangles
-
enumerator _squares
-
enumerator _ellipses
-
enumerator _disks
-
enumerator _ellipticSectors
-
enumerator _circularSectors
-
enumerator _ellipsoidSideParts
-
enumerator _sphereSideParts
-
enumerator _setsofpoints
-
enumerator _setsofelems
-
enumerator _trunkSideParts
-
enumerator _cylinderSideParts
-
enumerator _coneSideParts
-
enumerator _polyhedra
-
enumerator _parallelepipeds
-
enumerator _cuboids
-
enumerator _cubes
-
enumerator _ellipsoids
-
enumerator _balls
-
enumerator _trunks
-
enumerator _revTrunks
-
enumerator _cylinders
-
enumerator _revCylinders
-
enumerator _cones
-
enumerator _revCones
-
enumerator _composites
-
enumerator _loops
-
enumerator _extrusions
-
enumerator _noShapes
-
enum ShapeType
-
geometrical shapes
Values:
-
enumerator _noShape
-
enumerator _fromFile
-
enumerator _point
-
enumerator _segment
-
enumerator segment
-
enumerator _triangle
-
enumerator triangle
-
enumerator _quadrangle
-
enumerator quadrangle
-
enumerator _tetrahedron
-
enumerator tetrahedron
-
enumerator _hexahedron
-
enumerator hexahedron
-
enumerator _prism
-
enumerator prism
-
enumerator _pyramid
-
enumerator pyramid
-
enumerator _ellArc
-
enumerator _circArc
-
enumerator _splineArc
-
enumerator _parametrizedArc
-
enumerator _parametrizedSurface
-
enumerator _splineSurface
-
enumerator _polygon
-
enumerator _parallelogram
-
enumerator _rectangle
-
enumerator _square
-
enumerator _ellipse
-
enumerator _disk
-
enumerator _ellipticSector
-
enumerator _circularSector
-
enumerator _ellipsoidSidePart
-
enumerator _sphereSidePart
-
enumerator _setofpoints
-
enumerator _setofelems
-
enumerator _trunkSidePart
-
enumerator _cylinderSidePart
-
enumerator _coneSidePart
-
enumerator _polyhedron
-
enumerator _parallelepiped
-
enumerator _cuboid
-
enumerator _cube
-
enumerator _ellipsoid
-
enumerator _ball
-
enumerator _trunk
-
enumerator _revTrunk
-
enumerator _cylinder
-
enumerator _revCylinder
-
enumerator _cone
-
enumerator _revCone
-
enumerator _composite
-
enumerator _loop
-
enumerator _extrusion
-
enumerator _ocShape
-
enumerator _noShape
-
enum SingularityType
-
Values:
-
enumerator _notsingular
-
enumerator _r_
-
enumerator _logr
-
enumerator _loglogr
-
enumerator _notsingular
-
enum SmartPointerNullType
-
Values:
-
enumerator _smPtrNull
-
enumerator _smPtrNull
-
enum SobolevType
-
Sobolev space.
Values:
-
enumerator _L2
-
enumerator L2
-
enumerator _H1
-
enumerator H1
-
enumerator _Hdiv
-
enumerator Hdiv
-
enumerator _Hcurl
-
enumerator Hcurl
-
enumerator _Hrot
-
enumerator Hrot
-
enumerator _H2
-
enumerator H2
-
enumerator _Hinf
-
enumerator Hinf
-
enumerator Linf
-
enumerator _L2
-
enum SorSolverType
-
SOR solver type.
Values:
-
enumerator _diagSorS
-
enumerator _upperSorS
-
enumerator _lowerSorS
-
enumerator _matrixVectorSorS
-
enumerator _diagSorS
-
enum SpaceType
-
space type
Values:
-
enumerator _feSpace
-
enumerator _spSpace
-
enumerator _subSpace
-
enumerator _prodSpace
-
enumerator _feSpace
-
enum SpecialMatrix
-
enumeration for special matrices
Values:
-
enumerator _zeroMatrix
-
enumerator zeroMatrix
-
enumerator _idMatrix
-
enumerator idMatrix
-
enumerator _onesMatrix
-
enumerator onesMatrix
-
enumerator _hilbertMatrix
-
enumerator hilbertMatrix
-
enumerator _zeroMatrix
-
enum SplineBC
-
spline boundary condition
Values:
-
enumerator _undefBC
-
enumerator _naturalBC
-
enumerator _clampedBC
-
enumerator _periodicBC
-
enumerator _undefBC
-
enum SplineParametrization
-
spline parametrization type
Values:
-
enumerator _undefParametrization
-
enumerator _xParametrization
-
enumerator _uniformParametrization
-
enumerator _chordalParametrization
-
enumerator _centripetalParametrization
-
enumerator _undefParametrization
-
enum SplineSubtype
-
subtype of spline
Values:
-
enumerator _noSplineSubtype
-
enumerator _SplineInterpolation
-
enumerator _SplineApproximation
-
enumerator _noSplineSubtype
-
enum SplineType
-
type of spline
Values:
-
enumerator _noSpline
-
enumerator _C2Spline
-
enumerator _CatmullRomSpline
-
enumerator _BSpline
-
enumerator _BezierSpline
-
enumerator _Nurbs
-
enumerator _noSpline
-
enum StorageAccessType
-
short names of storage and access
Values:
-
enumerator _csRow
-
enumerator csRow
-
enumerator _csCol
-
enumerator csCol
-
enumerator _csDual
-
enumerator csDual
-
enumerator _csSym
-
enumerator csSym
-
enumerator _denseRow
-
enumerator denseRow
-
enumerator _denseCol
-
enumerator denseCol
-
enumerator _denseDual
-
enumerator denseDual
-
enumerator _skylineSym
-
enumerator skylineSym
-
enumerator _skylineDual
-
enumerator skylineDual
-
enumerator _csRow
-
enum StorageBuildType
-
storage build type
Values:
-
enumerator _undefBuild
-
enumerator _feBuild
-
enumerator _dgBuild
-
enumerator _diagBuild
-
enumerator _ecBuild
-
enumerator _globalBuild
-
enumerator _otherBuild
-
enumerator _undefBuild
-
enum StorageType
-
storage of matrices
Values:
-
enumerator _noStorage
-
enumerator _dense
-
enumerator dense
-
enumerator _cs
-
enumerator cs
-
enumerator _skyline
-
enumerator skyline
-
enumerator _coo
-
enumerator coo
-
enumerator _hmatrix
-
enumerator hmatrix
-
enumerator _noStorage
-
enum StructuredMeshSplitRule
-
enum to select the mesh generator/algorithm
Values:
-
enumerator _noSplitRule
-
enumerator _left
-
enumerator left
-
enumerator _right
-
enumerator right
-
enumerator _random
-
enumerator random
-
enumerator _alternate
-
enumerator alternate
-
enumerator _cross
-
enumerator cross
-
enumerator _noSplitRule
-
enum StrucType
-
structure of matrices and vectors
Values:
-
enumerator _scalar
-
enumerator _vector
-
enumerator _matrix
-
enumerator _vectorofvector
-
enumerator _vectorofmatrix
-
enumerator _matrixofmatrix
-
enumerator _undefStrucType
-
enumerator _scalar
-
enum SupportType
-
DoF support type.
Values:
-
enumerator _undefSupport
-
enumerator _pointSupport
-
enumerator _faceSupport
-
enumerator _edgeSupport
-
enumerator _elementSupport
-
enumerator _undefSupport
-
enum SymbolicOperation
-
symbolic operations
Values:
-
enumerator _idop
-
enumerator _plus
-
enumerator _minus
-
enumerator _multiply
-
enumerator _divide
-
enumerator _power
-
enumerator _atan2
-
enumerator _equal
-
enumerator _different
-
enumerator _less
-
enumerator _lessequal
-
enumerator _greater
-
enumerator _greaterequal
-
enumerator _and
-
enumerator _or
-
enumerator _abs
-
enumerator _sign
-
enumerator _realPart
-
enumerator _imagPart
-
enumerator _sqrt
-
enumerator _squared
-
enumerator _sin
-
enumerator _cos
-
enumerator _tan
-
enumerator _asin
-
enumerator _acos
-
enumerator _atan
-
enumerator _sinh
-
enumerator _cosh
-
enumerator _tanh
-
enumerator _asinh
-
enumerator _acosh
-
enumerator _atanh
-
enumerator _exp
-
enumerator _log
-
enumerator _log10
-
enumerator _pow
-
enumerator _not
-
enumerator _conj
-
enumerator _adj
-
enumerator _tran
-
enumerator _inv
-
enumerator _idop
-
enum SymType
-
symmetry of matrices
Values:
-
enumerator _noSymmetry
-
enumerator noSymmetry
-
enumerator _symmetric
-
enumerator symmetric
-
enumerator _skewSymmetric
-
enumerator skewSymmetric
-
enumerator _selfAdjoint
-
enumerator selfAdjoint
-
enumerator _skewAdjoint
-
enumerator skewAdjoint
-
enumerator _diagonal
-
enumerator diagonal
-
enumerator _undefSymmetry
-
enumerator undefSymmetry
-
enumerator _noSymmetry
-
enum TermType
-
Values:
-
enumerator _termUndef
-
enumerator _termVector
-
enumerator _termMatrix
-
enumerator _sutermVector
-
enumerator _sutermMatrix
-
enumerator _termUndef
-
enum TestStatus
-
Enumerated type used to pass back information from a StatusTest.
Values:
-
enumerator _passed
-
The solver passed the test.
-
enumerator _failed
-
The solver failed the test.
-
enumerator _undefined
-
The test has not been evaluated on the solver.
-
enumerator _passed
-
enum Trans_uvw
-
Values:
-
enumerator _uvw
-
enumerator _puv
-
enumerator _puw
-
enumerator _pvw
-
enumerator _su
-
enumerator _sv
-
enumerator _sw
-
enumerator _uvw
-
enum TransformType
-
geometrical transformations
Values:
-
enumerator _noTransform
-
enumerator _translation
-
enumerator _rotation2d
-
enumerator _rotation3d
-
enumerator _homothety
-
enumerator _scaling
-
enumerator _ptReflection
-
enumerator _reflection2d
-
enumerator _reflection3d
-
enumerator _composition
-
enumerator _explicitLinear
-
enumerator _noTransform
-
enum UmfPackComputationMode
-
Enum for computation mode of UmfPack.
Values:
-
enumerator _A
-
Computation Ax[]=b.
-
enumerator _At
-
Computation A’x=b.
-
enumerator _Aat
-
Computation A.’x=b.
-
enumerator _Pt_L
-
Computation P’Lx=b.
-
enumerator _L
-
Computation Lx=b.
-
enumerator _Lt_P
-
Computation L’Px=b.
-
enumerator _Lat_P
-
Computation L.’Px=b.
-
enumerator _Lt
-
Computation L’x=b.
-
enumerator _Lat
-
Computation L.’x=b.
-
enumerator _U_Qt
-
Computation UQ’x=b.
-
enumerator _U
-
Computation Ux=b.
-
enumerator _Q_Ut
-
Computation QU’x=b.
-
enumerator _Q_Uat
-
Computation QU.’x=b.
-
enumerator _Ut
-
Computation U’x=b.
-
enumerator _Uat
-
Computation U.’x=b.
-
enumerator _A
-
enum UnitaryVector
-
type of unitary vector
Values:
-
enumerator _n
-
enumerator _nx
-
enumerator _ny
-
enumerator _nxdotny
-
enumerator _nxcrossny
-
enumerator _nycrossnx
-
enumerator _ncrossn
-
enumerator _tau
-
enumerator _taux
-
enumerator _tauy
-
enumerator _btau
-
enumerator _btaux
-
enumerator _btauy
-
enumerator _n
-
enum UnknownType
-
type of unknown
Values:
-
enumerator _feUnknown
-
enumerator _spUnknown
-
enumerator _mixedUnknown
-
enumerator _feUnknown
-
enum ValueType
-
types of values of matrices and vectors
Values:
-
enumerator _none
-
enumerator _integer
-
enumerator _bool
-
enumerator _real
-
enumerator _complex
-
enumerator _string
-
enumerator _pt
-
enumerator _pointer
-
enumerator _integerVector
-
enumerator _boolVector
-
enumerator _realVector
-
enumerator _complexVector
-
enumerator _stringVector
-
enumerator _ptVector
-
enumerator _integerMatrix
-
enumerator _boolMatrix
-
enumerator _realMatrix
-
enumerator _complexMatrix
-
enumerator _stringMatrix
-
enumerator _ptMatrix
-
enumerator _pointerGeomDomain
-
enumerator _pointerFunction
-
enumerator _pointerIntegrationMethod
-
enumerator _pointerIntegrationMethods
-
enumerator _pointerParametrization
-
enumerator _pointerSpline
-
enumerator _pointerTermVectors
-
enumerator _pointerTransformation
-
enumerator _enumComputationType
-
enumerator _enumCtype
-
enumerator _enumDimensionType
-
enumerator _enumEigenComputationalMode
-
enumerator _enumEigenSolverType
-
enumerator _enumEigenSortKind
-
enumerator _enumFESubType
-
enumerator _enumFEType
-
enumerator _enumFunctionPart
-
enumerator _enumGeometricEndShape
-
enumerator _enumGtype
-
enumerator _enumIntegrationMethodType
-
enumerator _enumInterpolationType
-
enumerator _enumIOFormat
-
enumerator _enumIptype
-
enumerator _enumIterativeSolverType
-
enumerator _enumLanguage
-
enumerator _enumMeshGenerator
-
enumerator _enumObjtype
-
enumerator _enumPartitioning
-
enumerator _enumPtype
-
enumerator _enumQuadRule
-
enumerator _enumReductionMethodType
-
enumerator _enumRtype
-
enumerator _enumShapeType
-
enumerator _enumSobolevType
-
enumerator _enumSplineBC
-
enumerator _enumSplineParametrization
-
enumerator _enumSplineSubtype
-
enumerator _enumSplineType
-
enumerator _enumStorageAccessType
-
enumerator _enumStructuredMeshSplitRule
-
enumerator _enumStorageType
-
enumerator _enumSymType
-
enumerator _enumTransformType
-
enumerator _none
-
enum VarComparison
-
Values:
-
enumerator _index
-
enumerator _color
-
enumerator _index
-
enum VariableName
-
variable symbolic name
Values:
-
enumerator _varUndef
-
enumerator _x
-
enumerator _x1
-
enumerator _y
-
enumerator _x2
-
enumerator _z
-
enumerator _x3
-
enumerator _t
-
enumerator _x4
-
enumerator _xy
-
enumerator _yx
-
enumerator _xx
-
enumerator _yy
-
enumerator _r
-
enumerator _theta
-
enumerator _phi
-
enumerator _varUndef
Functions
- Parameter _nbIterations (0, "nbiterations")
- Parameter _residue (0.,"residue")
-
template<typename K>
inline Matrix<Matrix<real_t>> abs(const Matrix<Matrix<K>> &mat)
-
abs of a matrix of matrices
-
template<typename K>
inline SparseMatrix<real_t> abs(const SparseMatrix<K> &mat)
-
abs of a matrix
-
inline SuTermVector abs(const SuTermVector &s)
-
inline SymbolicFunction &abs(const SymbolicFunction &f)
-
TermVector abs(const TermVector &tv)
-
extracts modulus
-
template<typename T1_iterator, typename R_iterator>
void absTpl(T1_iterator b1, T1_iterator e1, R_iterator Rb)
-
returns magnitude of vector entries: R[i] = abs(T1[i])
-
template<typename T, typename K>
void acaFull(const SuBilinearForm &subf, LowRankMatrix<T> &lrm, number_t rmax, real_t eps, const std::vector<number_t> &rowDofs, const std::vector<number_t> &colDofs, const std::vector<Element*> &rowElts, const std::vector<Element*> &colElts, IEcomputationParameters &ieparams, K &vt, const std::list<std::multimap<real_t, IntgMeth>> &intgMaps, const std::vector<KernelOperatorOnUnknowns*> &kopregs, const std::vector<KernelOperatorOnUnknowns*> &kopsings, const std::map<Element*, GeoNumPair> &sidelts_u, const std::map<Element*, GeoNumPair> &sidelts_v, bool noUpdatedNormal, bool same_interpolation, bool sym)
-
compute Low Rank Matrix using ACA full pivoting method algorithm from the phd thesis of Benoît Lizé
T: type of the matrix coefficient K: type of computation (real or complex)
subf: a single unknown bilinear form defined on a unique domains pair (assumed) vt: to pass as template the scalar type (real or complex) lrm: the LowRankMatrix to build rmax: maximum rank of low rank matrix (if 0, not used) eps: threshold of of low rank matrix: |A-Ar|< eps*|A| rowDofs, colDofs: row and col dofs involved rowElts, colElts: row/col elements supporting row/col dofs ieparams: useful informations on ie computation intgMaps: list of integration methods to be used (built outside) kopregs , kopsings: list of regular and singular kernels when required
Produce a low rank matrix of the form A*B’ with A of size m x k and B of size n x k, k the rank
-
template<typename T, typename K>
void acaPartial(const SuBilinearForm &subf, LowRankMatrix<T> &lrm, number_t rmax, real_t eps, const std::vector<number_t> &rowDofs, const std::vector<number_t> &colDofs, const std::vector<Element*> &rowElts, const std::vector<Element*> &colElts, const Space *rowSpace, const Space *colSpace, IEcomputationParameters &ieparams, K &vt, const std::list<std::multimap<real_t, IntgMeth>> &intgMaps, const std::vector<KernelOperatorOnUnknowns*> &kopregs, const std::vector<KernelOperatorOnUnknowns*> &kopsings, const std::map<Element*, GeoNumPair> &sidelts_u, const std::map<Element*, GeoNumPair> &sidelts_v, bool noUpdatedNormal, bool same_interpolation, bool sym)
-
compute Low Rank Matrix using ACA partial pivoting method algorithm from the phd thesis of Benoît Lizé
T: type of the matrix coefficient K: type of computation (real or complex)
subf: a single unknown bilinear form defined on a unique domains pair (assumed) vt: to pass as template the scalar type (real or complex) mat: the LowRankMatrix to build rowDofs, colDofs: row and col dofs involved (start at 0) rowElts, colElts: pointers to row/col element supporting row/col dofs rowSpace, colSpace: row/col spaces (required to get FeDof) ieparams: useful informations on ie computation intgMaps: list of integration methods to be used (built outside) kopregs , kopsings: list of regular and singular kernels when required
Produce a low rank matrix of the form A*I*B
-
template<typename T, typename K>
void acaPlus(const SuBilinearForm &subf, LowRankMatrix<T> &lrm, number_t rmax, real_t eps, const std::vector<number_t> &rowDofs, const std::vector<number_t> &colDofs, const std::vector<Element*> &rowElts, const std::vector<Element*> &colElts, const Space *rowSpace, const Space *colSpace, IEcomputationParameters &ieparams, K &vt, const std::list<std::multimap<real_t, IntgMeth>> &intgMaps, const std::vector<KernelOperatorOnUnknowns*> &kopregs, const std::vector<KernelOperatorOnUnknowns*> &kopsings, const std::map<Element*, GeoNumPair> &sidelts_u, const std::map<Element*, GeoNumPair> &sidelts_v, bool noUpdatedNormal, bool same_interpolation, bool sym)
-
compute Low Rank Matrix using ACA plus partial pivoting method algorithm from the phd thesis of Benoît Lizé
T: type of the matrix coefficient K: type of computation (real or complex)
subf: a single unknown bilinear form defined on a unique domains pair (assumed) vt: to pass as template the scalar type (real or complex) mat: the LowRankMatrix to build rowDofs, colDofs: row and col dofs involved (start at 0) rowElts, colElts: pointers to row/col element supporting row/col dofs rowSpace, colSpace: row/col spaces (required to get FeDof) ieparams: useful informations on ie computation intgMaps: list of integration methods to be used (built outside) kopregs , kopsings: list of regular and singular kernels when required
Produce a low rank matrix of the form A*I*B
-
complex_t acos(const complex_t &z)
-
inline SuTermVector acos(const SuTermVector &s)
-
inline SymbolicFunction &acos(const SymbolicFunction &f)
-
inline TermVector acos(const TermVector &s)
-
complex_t acosh(const complex_t &z)
-
real_t acosh(const real_t &r)
-
inline SuTermVector acosh(const SuTermVector &s)
-
inline SymbolicFunction &acosh(const SymbolicFunction &f)
-
inline TermVector acosh(const TermVector &s)
-
template<typename T>
T adaptiveTrapz(T (*f)(real_t, Parameters&), Parameters &pars, real_t a, real_t b, real_t eps = 1E-6)
-
TermVector add(const TermVector&, const TermVector&)
-
create TermVector U+V evaluate dofs on a function: dof_i(f) for any scalar dofs related to scalar unknown u and domain
-
void addElts(Node<GeomElement> *node, std::set<GeomElement*> &elts, const std::set<number_t> &vns, std::map<string_t, std::pair<GeomElement*, GeomElement*>> &sideIndex, std::set<number_t> vBoundaryIndex, std::map<string_t, GeomElement*> &cdomIndex, dimen_t d)
-
void addElts(std::set<GeomElement*> &elts, std::set<GeomElement*> &elts1, std::set<GeomElement*> &elts2, const std::set<number_t> &vSideCrack)
-
void addMatrixMatrix(const LargeMatrix<complex_t> &matA, const LargeMatrix<real_t> &matB, LargeMatrix<complex_t> &matC)
-
Add two different type largeMatrix and store result into the third The two matrices must share the same storage.
The result matrix will point to the same storage after the summation
- Parameters:
-
matA – complex matrix
matB – real matrix
matC – complex matrix which share the same storage.
-
void addMatrixMatrix(const LargeMatrix<real_t> &matA, const LargeMatrix<complex_t> &matB, LargeMatrix<complex_t> &matC)
-
Add two different type largeMatrix and store result into the third The two matrices must share the same storage.
The result matrix will point to the same storage after the summation
- Parameters:
-
matA – real matrix
matB – complex matrix
matC – complex matrix which share the same storage.
-
template<typename T>
void addMatrixMatrix(const LargeMatrix<T> &matA, const LargeMatrix<T> &matB, LargeMatrix<T> &matC)
-
template<typename T>
LargeMatrix<T> addMatrixMatrix(const LargeMatrix<T> &matA, const LargeMatrix<T> &matB, T s = T(1))
-
A+s*B.
-
template<typename S>
LargeMatrix<S> *addMatrixMatrixSkyline(const LargeMatrix<S> &matA, const LargeMatrix<S> &matB)
-
template<typename T>
LargeMatrix<T> *addMatrixMatrixSkyline(const LargeMatrix<T> &matA, const LargeMatrix<T> &matB)
-
template<typename T>
void addScaledVector(SuTermVector &x, SuTermVector &v, const T &t)
-
special operation to accumulate t*v in x, assumed consistent unknown and same size
x+=v*t
-
template<typename T>
void addScaledVector(TermVector &x, TermVector &v, const T &t)
-
x+=t*v
-
void addScaledVector(VectorEntry&, VectorEntry&, const complex_t&)
-
x+=t*v (t complex)
-
void addScaledVector(VectorEntry&, VectorEntry&, const real_t&)
-
x+=t*v (t real)
-
void addVectorThenAssign(TermVector &tv1, const TermVector &tv2)
-
function used in solver
operation U+=t
-
void addVectorThenAssign(Vector<real_t> &v, const Vector<complex_t> &cA)
-
Add then assign complex_t to real_t In fact, this kind of function is forbidden but we implement it here as a trick to overcome the problem of instantiation in Solver.
-
inline complex_t adj(const complex_t&)
-
Matrix<complex_t> adj(const Matrix<complex_t> &cB)
-
adjoint of a complex matrix
adjoint complex matrix
-
Matrix<real_t> adj(const Matrix<real_t> &rB)
-
adjoint of a real matrix (transpose)
adjoint (transpose) real matrix
-
inline real_t adj(const real_t&)
-
OperatorOnFunction &adj(Function&)
-
conjugate and transpose f
-
OperatorOnKernel &adj(Kernel&)
-
conjugate and transpose k
-
OperatorOnFunction &adj(OperatorOnFunction&)
-
conjugate and transpose opf
-
OperatorOnKernel &adj(OperatorOnKernel&)
-
conjugate and transpose opk
-
SymbolicTermMatrix &adj(SymbolicTermMatrix &S)
- template<typename T> inline Function & adj (T(fun)(const Point &, const Point &, Parameters &))
- template<typename T> inline Function & adj (T(fun)(const Point &, Parameters &))
- template<typename T> inline Function & adj (T(fun)(const Vector< Point > &, const Vector< Point > &, Parameters &))
- template<typename T> inline Function & adj (T(fun)(const Vector< Point > &, Parameters &))
-
Value &adj(Value &v)
-
set to true or false the temporary conjugate/transpose flag
set to true or false the temporary transpose/conjugate flag
-
inline complex_t adjoint(const complex_t &c)
-
template<typename M_it, typename MM_it>
void adjoint(const dimen_t nbr, const dimen_t nbc, M_it it_m1b, MM_it it_m2b)
-
Matrix<complex_t> adjoint(const Matrix<complex_t> &cB)
-
adjoint of a complex matrix
adjoint complex matrix
-
Matrix<real_t> adjoint(const Matrix<real_t> &rB)
-
adjoint of a real matrix (transpose)
adjoint (transpose) real matrix
-
template<typename K>
MatrixEigenDense<K> adjoint(const MatrixEigenDense<K> &mat)
-
inline real_t adjoint(const real_t &r)
-
template<typename K>
SparseMatrix<K> adjoint(const SparseMatrix<K> &m)
-
template<typename K>
VectorEigenDense<K> adjointVec(const VectorEigenDense<K> &v)
-
Adjoint a vector.
- Parameters:
-
v – [in] source vector
- Returns:
-
adjointed vector
-
void adjustScalarEntriesG(VectorEntry *&scalar_entries_p, std::vector<DofComponent> &cdofs, const std::vector<DofComponent> &newcdofs)
-
adjust the scalar entries to the cdofs numbering newcdofs when cdofs is included in newcdofs, new zeros are introduced (extension) when newcdofs is included in cdofs , coefficients are removed (restriction) else it is in a same time a restriction (removed cdofs) and an extension (omitted cdof) in any case, the coefficient may be permuted and cdofs = newcdofs at the end
tool to adjust VectorEntry
used by SuTermVector and TermVector
-
inline complex_t airy(const complex_t &z, DiffOpType d = _id)
-
Airy function: Ai(z) or Ai’(z)
-
inline complex_t airy(real_t x, DiffOpType d = _id)
-
Airy function: Ai(x) or Ai’(x)
-
void airyError(int err, const complex_t &z, const string_t &pr)
-
inline real_t airyR(const real_t &x)
-
inline real_t airyRp(const real_t &x)
-
inline real_t airyRpp(const real_t &x)
-
void alignTermMatrix(TermMatrix*&, TermMatrix*&, bool keepMatrix = true)
-
check if same dofs and align Termatrix’s if not the same dofs (internal tool)
check if A and B are defined on the same dofs, if not, align matrix to the largest set of dofs (union of A dofs and B dofs) use the sums A+0*diag(B) and B+0*diag(A) to produced matrices with same dofs if keepMatrix = true, create copy of A, B matrices on the memory stack if keepMatrix = false, A, B matrices are modified if not the same dofs NOTE: adding diagonal 0 induces storage change and may increase significatively the storage size !
-
template<class MAB_, class MAsB_>
MAsB_ *allocAsB(const MAB_ &matA, const MAB_ &matB, const complex_t sigma)
-
template<class K_, class MAsB_, class MB_>
MAsB_ *allocAsB(const MAsB_ &matA, const MB_ &matB, const K_ sigma)
-
Allocation of temporary matrix A - s B.
-
template<class K_, class MA_>
MA_ *allocAsI(const MA_ &matA, const K_ sigma)
-
Allocation of temporary matrix A - s Id.
-
void alternateRule(QuadRule, ShapeType, const string_t&)
-
display message before choosing an alternate rule
-
inline real_t angle(const std::vector<real_t> &u, const std::vector<real_t> &v, const std::vector<real_t> &n = std::vector<real_t>())
-
signed or unsigned angle u to v in [-pi,pi], n unit normal to u-v plane in 2D and 3D; |n|=1 and n^(u^v) = 0 are not checked ! sign of angle is related to n, if n is not given, n=u^v is chosen and thus angle is always >=0 (not signed) if u=0 or v=0 it returns 0
-
void appliedRhsCorrectorTo(VectorEntry *b, const std::vector<DofComponent> &cdofsb, MatrixEntry *rhsmat, const Constraints *cu, const Constraints *cv, const ReductionMethod &rm)
-
correct a right hand side b to take into account constraints recall that constraints on unknown are of the form Ue1 + CUr1 = f (C matrix e1 x r1) and constraints on test functions are of the form Ve2 + DVr2 = 0 (D matrix e2 x r2) where ei stands for eliminated indices and ri for reduced indices (e1=e2 and r1=r2 in most cases) in the matrix reduction process, a corrector matrix has been computed, say E matrix m x e1 the correction process consists in first step : b -= E * f_e1 (column combination) second step: b_r2 -= Dt * b_e2 (row combination) third step : b_e2 = f_e1 (deletion in case of real reduction) in simple cases (Dirichlet for instance), C=D=0 so the second step is not required
right hand side constraints correction
b : scalar vector to be corrected cdofsb: component dof of vector b rhsmap: pointer to correction matrix (C) cu, cv: pointer to u/v constraints system
-
void applyEssentialConditions(VectorEntry &v, const std::vector<DofComponent> &cdofs, const Constraints &cs)
-
apply essential condition to a VectorEntry (user tool) v : the SCALAR vector to be reduced cdofs: the component dofs of the vector v cs : the constraints to apply once reduced, the constraints reads Ve = f - C*Vr where Ve the ne eliminated components, Vr the nr reduced components and C a ne x nr matrix this function, first build the vector s = f - C*Vr and then set the eliminated components of v to s
apply constraints to a vector
-
int arConvergedEigenvalues()
-
std::string arEigInfos()
-
This function calls the previous ones, gather the informations in a string which is returned.
-
bool areNeighbors2D(const Point &p, const Point &q, real_t tol)
-
determines if a prism is valid
determines if 2D points are neighbors
-
bool areNeighbors3D(const Point &p, const Point &q, real_t tol)
-
determines if 3D points are neighbors
-
bool arePointsCoplanar(const Point &p1, const Point &p2, const Point &p3, const Point &p4, real_t tol)
-
test if 4 points are coplanar
-
bool arePointsCoplanar(const std::vector<Point> &p, real_t tol)
-
test if a set of points is coplanar
-
bool arGetAutoShift()
-
int arGetIter()
-
int arGetMaxit()
-
int arGetMode()
-
std::string arGetModeStr()
-
int arGetN()
-
int arGetNcv()
-
int arGetNev()
-
std::complex<double> arGetShift()
-
double arGetShiftImag()
-
double arGetTol()
-
std::string arGetWhich()
-
void Argyris2dMap(const std::vector<real_t> &rw, std::vector<real_t> &w, real_t j11, real_t j12, real_t j21, real_t j22, real_t t11, real_t t12, real_t t13, real_t t21, real_t t22, real_t t23, real_t t31, real_t t32, real_t t33, real_t a1, real_t a2, real_t a3, real_t b1, real_t b2, real_t b3, real_t c1, real_t c2, real_t c3, real_t d1, real_t d2, real_t d3, real_t n1x, real_t n1y, real_t n2x, real_t n2y, real_t n3x, real_t n3y)
-
std::string arInterfaceObj()
-
std::string arKindOfFactorization()
-
std::string arpackObj()
-
EigenElements arpackSolve(TermMatrix *A, TermMatrix *B, const std::vector<Parameter> &ps)
-
Main entry point for Arpack eigenvalue solver.
-
bool arParametersDefined()
- template void array2Vector (const complex_t *source, std::vector< complex_t > &vec)
-
template<typename K_>
void array2Vector(const K_ *source, std::vector<K_> &vec)
-
Convert array of K_ to vector.
- template void array2Vector (const real_t *source, std::vector< real_t > &vec)
-
complex_t ascendingSeriesOfE1(const complex_t &z)
-
ascending series in E1 formula (used for ‘small’ z)
-
complex_t asin(const complex_t &z)
-
inline SuTermVector asin(const SuTermVector &s)
-
inline SymbolicFunction &asin(const SymbolicFunction &f)
-
inline TermVector asin(const TermVector &s)
-
complex_t asinh(const complex_t &z)
-
real_t asinh(const real_t &r)
-
inline SuTermVector asinh(const SuTermVector &s)
-
inline SymbolicFunction &asinh(const SymbolicFunction &f)
-
inline TermVector asinh(const TermVector &s)
-
template<typename T, typename K>
void assemblyDG(LargeMatrix<T> &mat, std::vector<Matrix<K>> &matels, const K &coef, bool onlyM11, const std::vector<number_t> &adrs11, const std::vector<number_t> &adrs12, const std::vector<number_t> &adrs21, const std::vector<number_t> &adrs22, bool sym, const std::vector<number_t> &dofNum_u1, const std::vector<number_t> &dofNum_v1, number_t ncu1, number_t ncv1, const std::vector<number_t> &dofNum_u2, const std::vector<number_t> &dofNum_v2, number_t ncu2, number_t ncv2)
-
template<typename K, typename IteratorM>
inline void assemblyMat(K &mat, IteratorM itM, number_t nbu)
-
template<typename K, typename IteratorM>
inline void assemblyMat(Matrix<K> &mat, IteratorM itM, number_t nbu)
-
template<typename K, typename IteratorM>
inline void assemblyMatNoCritical(K &mat, IteratorM itM, number_t nbu)
-
inline void assemblyMatNoCritical(Matrix<complex_t> &mat, Matrix<complex_t>::iterator itM, number_t nbu)
-
inline void assemblyMatNoCritical(Matrix<complex_t> &mat, Matrix<real_t>::iterator itM, number_t nbu)
-
template<typename K, typename IteratorM>
inline void assemblyMatNoCritical(Matrix<K> &mat, IteratorM itM, number_t nbu)
-
inline void assemblyMatNoCritical(Matrix<real_t> &mat, Matrix<complex_t>::iterator itM, number_t nbu)
-
inline void assign(complex_t &x, const complex_t &y)
-
inline void assign(complex_t &x, const real_t &y)
-
inline void assign(real_t &x, const complex_t &y)
-
inline void assign(real_t &x, const real_t &y)
-
Assigns y to x for all combinations of a priori unknown types of x and y thus preventing from an invalid cast.
-
template<>
inline void assignVectorTo(complex_t &t, const complex_t &v)
-
template<>
inline void assignVectorTo(complex_t &t, const real_t &v)
-
template<>
inline void assignVectorTo(real_t &t, const real_t &v)
-
template<typename T, typename K>
inline void assignVectorTo(T &t, const K &v)
-
some fake functions to override template compilation problem of OperatorOnFunction::eval
-
string_t asString(GeoOperation op)
-
give a string representation of GeoOperation
string representation of GeoOperation
-
complex_t atan(const complex_t &z)
-
inline SuTermVector atan(const SuTermVector &s)
-
inline SymbolicFunction &atan(const SymbolicFunction &f)
-
inline TermVector atan(const TermVector &s)
-
inline SymbolicFunction &atan2(const real_t &r, const SymbolicFunction &f)
-
inline SymbolicFunction &atan2(const SymbolicFunction &f, const real_t &r)
-
inline SymbolicFunction &atan2(const SymbolicFunction &f1, const SymbolicFunction &f2)
-
complex_t atanh(const complex_t &z)
-
real_t atanh(const real_t &r)
-
inline SuTermVector atanh(const SuTermVector &s)
-
inline SymbolicFunction &atanh(const SymbolicFunction &f)
-
inline TermVector atanh(const TermVector &s)
-
void badDegreeRule(int degree, const string_t &name, ShapeType sh)
-
error message
-
void badNodeRule(int n_nodes, const string_t &name, ShapeType sh)
-
error message
-
string_t basename(const string_t &f)
-
return basename of a file name using last slash and last point as delimiters
-
string_t basenameWithExtension(const string_t &f)
-
return basename of a file name using last slash as delimiter
-
inline complex_t besselI(const complex_t &z, real_t N)
-
Modified Bessel function of the first kind and order N: I_N(z) (complex case)
-
template<>
inline real_t besselI(real_t x, real_t N)
-
Modified Bessel function of the first kind and real order N: I_N(x)
-
template<class T_>
real_t besselI(real_t x, T_ N)
-
inline complex_t besselI0(const complex_t &z)
-
Modified Bessel function of the first kind and order 0 : I_0(z) (complex case)
-
real_t besselI0(real_t x)
-
Modified Bessel function of the first kind and order 0 : I_0(x)
-
std::vector<real_t> besselI0N(real_t x, number_t n)
-
Modified Bessel functions of the first kind and order 0..N.
-
inline complex_t besselI1(const complex_t &z)
-
Modified Bessel function of the first kind and order 1 : I_1(z) (complex case)
-
real_t besselI1(real_t x)
-
Modified Bessel function of the first kind and order 1 : I_1(x)
-
inline complex_t besselJ(const complex_t &z, real_t N)
-
Bessel function of the first kind and order N: J_N(z) (complex case)
-
template<>
inline real_t besselJ(real_t x, real_t N)
-
Bessel function of the first kind and real order N: J_N(x)
-
template<class T_>
real_t besselJ(real_t x, T_ N)
-
inline complex_t besselJ0(const complex_t &z)
-
Bessel function of the first kind and order 0 : J_0(z) (complex case)
-
real_t besselJ0(real_t x)
-
Bessel function of the first kind and order 0 : J_0(x)
-
std::vector<real_t> besselJ0N(real_t x, number_t N)
-
Bessel functions of the first kind and order 0..N.
-
inline complex_t besselJ1(const complex_t &z)
-
Bessel function of the first kind and order 1 : J_1(z) (complex case)
-
real_t besselJ1(real_t x)
-
Bessel function of the first kind and order 1 : J_1(x)
-
void besselJY01Test(std::ostream &out)
-
inline complex_t besselK(const complex_t &z, real_t N)
-
Modified Bessel function of the second kind and order N: K_N(z) (complex case)
-
template<>
inline real_t besselK(real_t x, real_t N)
-
Modified Bessel function of the second kind and real order N: K_N(x)
-
template<class T_>
real_t besselK(real_t x, T_ N)
-
inline complex_t besselK0(const complex_t &z)
-
Modified Bessel function of the second kind and order 0 : K_0(z) (complex case)
-
real_t besselK0(real_t x)
-
Modified Bessel function of the second kind and order 0 : K_0(x)
-
std::vector<real_t> besselK0N(real_t x, number_t n)
-
Modified Bessel functions of the second kind and order 0..N.
-
inline complex_t besselK1(const complex_t &z)
-
Modified Bessel function of the second kind and order 1 : K_1(z) (complex case)
-
real_t besselK1(real_t x)
-
Modified Bessel function of the second kind and order 1 : K_1(x)
-
inline complex_t besselY(const complex_t &z, real_t N)
-
Bessel function of the second kind and order N: Y_N(z) (complex case)
-
template<>
inline real_t besselY(real_t x, real_t N)
-
Bessel function of the second kind and real order N: Y_N(x)
-
template<class T_>
real_t besselY(real_t x, T_ N)
-
inline complex_t besselY0(const complex_t &z)
-
Bessel function of the second kind and order 0 : Y_0(z) (complex case)
-
real_t besselY0(real_t x)
-
Bessel function of the second kind and order 0 : Y_0(x)
-
std::vector<real_t> besselY0N(real_t x, number_t N)
-
Bessel functions of the second kind and order 0..N.
-
real_t besselY0withoutSingularity(real_t x)
-
inline complex_t besselY1(const complex_t &z)
-
Bessel function of the second kind and order 0 : Y_1(z) (complex case)
-
real_t besselY1(real_t x)
-
Bessel function of the second kind and order 0 : Y_1(x)
-
real_t besselY1withoutSingularity(real_t x)
-
number_t binomialCoefficient(int n, int k)
-
ompute binomial coefficient C_n^k = n! / ( k! * (n-k)! )
compute binomial coefficient C_n^k = = n! / ( k! * (n-k)! )
-
void binomialCoefficients(std::vector<number_t> &row)
-
compute n-th row in Pascal’s triangle of binomial coefficients
compute n-th row of Pascal binomial coefficients where n = row.size()-1
k = 0 1 2 3 4 5
n = 1 | 1 1
n = 2 | 1 2 1 C^n_k = C^{n-1}_{k-1} + C^{n-1}_k , 0 <= k <= n
n = 3 | 1 3 3 1
n = 4 | 1 4 6 4 1
n = 5 | 1 5 10 10 5 1 - n = ………………….
-
void binomialCoefficientsScaled(std::vector<real_t> &row)
-
ompute n-th row in Pascal’s triangle of binomial coefficients scaled by 1/(n-1)!
compute n-th row of Pascal binomial coefficients scaled by (n-1)! where n = row.size()-1
-
inline complex_t biry(real_t x, DiffOpType d = _id)
-
Airy function: Bi(x) or Bi’(x)
-
void blanks(std::string&, int_t n)
-
add to or remove from end of string n blanks(keep always first char)
-
template<typename I>
bool blockAdmissible(ClusterNode<I>*, ClusterNode<I>*, HMAdmissibilityRule, real_t eta = 1.)
-
admissibility rule for a cluster node product
-
string_t booltoWord(bool)
-
convert bool to string true or false
-
BoundingBox boundingBox(const Element &elt)
-
BoundingBox boundingBox(const FeDof &fed)
-
BoundingBox boundingBox(const Point &p)
-
template<typename T>
BoundingBox boundingBox(const T&)
-
std::map<const Unknown*, Constraints*> buildConstraints(const EssentialConditions &ecs)
-
build Constraints set from EssentialConditions (list of essential conditions)
build Constraints from EssentialConditions
create Constraints object for each essential condition
merge constraints involving same unknown
if there exist a constraint coupling different unknowns merge all Constraints object in one Constraints object the output is a map of Constraints pointer indexed by unknown pointer; only one Constraints pointer in case of coupling conditions
-
void buildInterpolationData(InterpolationType interpType, number_t dim, FEType &typ, FESubType &sub, number_t &num, SobolevType &spa)
-
build interpolation data from InterpolationType
-
const Function *buildMap(const GeomDomain&, const GeomDomain&)
-
build map from dom1 to dom2 in simple cases
-
void buildNameAndSuffixTransformParams(std::vector<Parameter> &ps, string_t &name, string_t &suffix)
-
void buildParamSaveToFile(const Parameter &p, IOFormat &iof, bool &aFilePerDomain)
-
save mesh to file in format _msh, _melina ,_vtk or _vtu when withDomains is true, domain informations are also exported
input/output function
-
void buildParamSaveToFile(const Parameter &p, IOFormat &iof, string_t &dataName, bool &aFilePerDomain)
-
input/output function
-
void buildParamSaveToFile(const Parameter &p, StorageType &st, bool &encodingFileName)
-
void buildSolverParams(const std::vector<Parameter> &ps, real_t &tol, number_t &maxIt, real_t &omega, number_t &krylovDim, number_t &verboseLevel, string_t &name, IterativeSolverType &solverType)
-
main routine to manage parameters of solver constructors
-
MatrixStorage *buildStorage(const Space &rs, const Space &cs, StorageType st, AccessType at, StorageBuildType bt)
-
build a storage from a pair of Space
-
MatrixStorage *buildStorage(StorageType st, AccessType at, StorageBuildType bt, number_t dimr, number_t dimc, const std::vector<std::set<number_t>> &indices, const string_t &id = "")
-
build a storage from type, dimension and column indices (vector of sets)
-
MatrixStorage *buildStorage(StorageType st, AccessType at, StorageBuildType bt, number_t dimr, number_t dimc, const std::vector<std::vector<number_t>> &indices, const string_t &id = "")
-
build a storage from type, dimension and column indices (vector of vectors)
-
MatrixStorage *buildStorage(StorageType st, AccessType at, StorageBuildType bt, number_t dimr, number_t dimc, const string_t &id = "")
-
build a storage from type and dimension, no allocation of pointers (void matrix)
-
template<class T>
inline RefToValue<T> ByRef(T &t)
-
RefToValue creator.
-
real_t byteTo(number_t mem, MemoryUnit mu = _megabyte)
-
convert from byte to xxxbyte
-
string_t capitalize(const string_t &s)
-
convert “abCdeF” to “AbCdeF”
returns string_t with initial converted to uppercase
-
std::vector<complex_t> cardan(complex_t a, complex_t b, complex_t c, complex_t d)
-
computes roots of degree 3 polynomial (complex Cardan method)
-
std::vector<complex_t> cardan(real_t a, real_t b, real_t c, real_t d)
-
computes roots of degree 3 polynomial (real Cardan method)
-
complex_t cbrt(const complex_t &z)
-
real_t cbrt(const real_t &r)
-
void chebyshevPolynomials(real_t, std::vector<real_t>&)
-
Chebyshev polynomials (of the first kind) on [-1, 1] up to order n T_0(x) = 1, T_1(x) = x, T_n(x) = 2 x T_{n-1}(x) - T_{n-1}(x) , n > 1.
-
template<class M_p>
void checkCond(M_p fact_p, string_t matName)
-
bool checkConsistancy(const OperatorOnUnknown&, AlgebraicOperator, const OperatorOnUnknown&)
-
check opu aop opv consistancy
-
void checkTermVectorInOperator(const TermVector &tv, const string_t &op)
-
void childNodes(Node<GeomElement> *curnode, const MeshDomain *momega, GeomElement *gelt, std::set<GeomElement*> &pickedElts)
-
test intersection of E1 with E2 with a tolerance (default is theEpsilon)
internal tool
-
void clear(Term &t1)
-
user aliases to term(s) cleaning
-
void clearProjectors(const Space &sp)
-
clear Projectors depending on a space (implemented in Projector.cpp)
-
void clearStorages(const Space &sp)
-
clear Storages depending on a space (implemented in Term.cpp)
-
void clearTerms(const Space &sp)
-
clear Terms depending on a space (implemented in Term.cpp)
-
void clearUnknowns(const Space &sp)
-
clear Unknowns depending on a space (implemented in Unknown.cpp)
-
void *cloneFunction(const void *p)
-
void *cloneGeomDomain(const void *p)
-
void *cloneIntegrationMethod(const void *p)
-
void *cloneIntegrationMethods(const void *p)
-
void *cloneParametrization(const void *p)
-
void *cloneSpline(const void *p)
-
void *cloneTermVectors(const void *p)
-
void *cloneTransformation(const void *p)
-
inline void closedCrack(Geometry &g1)
-
user shortcut to crack one geometry
-
inline void closedCrack(Geometry &g1, Geometry &g2, Geometry &g3)
-
user shortcut to crack 3 geometries
-
inline void closedCrack(Geometry &g1, Geometry &g2, Geometry &g3, Geometry &g4)
-
user shortcut to crack 4 geometries
-
inline void closedCrack(Geometry &g1, Geometry &g2, Geometry &g3, Geometry &g4, Geometry &g5)
-
user shortcut to crack 5 geometries
-
inline void closedCrack(Geometry &g1, Geometry &g2, Geometry &g3, Geometry &g4, Geometry &g5, Geometry &g6)
-
user shortcut to crack 6 geometries
-
inline void closedCrack(Geometry &g1, Geometry &g2, Geometry &g3, Geometry &g4, Geometry &g5, Geometry &g6, Geometry &g7)
-
user shortcut to crack 7 geometries
-
inline void closeFile(FILE *data)
-
inline void closeFile(std::ifstream &data)
-
inline const complex_t &cmplx(const complex_t &x)
-
template<typename K>
MatrixEigenDense<complex_t> cmplx(const MatrixEigenDense<K> &mat)
-
complex_t cmplx(const Parameter&)
-
cast to complex_t
-
inline complex_t cmplx(const real_t &x)
-
various useful definition to insure consistancy with other classes
-
Vector<Vector<complex_t>> cmplx(const Vector<Vector<real_t>> &a)
-
cast a real vector to a complex vector
cast a real vector vector to a complex vector vector
-
string_t coefAsString(bool isFirst, const complex_t &a)
-
string form of a complex coefficient in a linear combination
-
bool colAmd(number_t nbr, number_t nbc, const std::vector<number_t> &rowIndices, const std::vector<number_t> &colPointer, std::vector<number_t> &colPerm)
-
template<typename T>
LowRankMatrix<T> combine(const LowRankMatrix<T> &L1, const T &s1, const LowRankMatrix<T> &L2, const T &s2, real_t eps = 0)
-
template<typename K>
PolynomialT<K> combine(const PolynomialBasisT<K> &ps, const std::vector<K> &a)
-
return combination a1*p1+a2*p2+…
-
template<typename K>
std::vector<PolynomialT<K>> combine(const PolynomialsBasisT<K> &ps, const std::vector<K> &a)
-
return combination a1*p1+a2*p2+…
-
template<typename T, typename K>
void combine(std::vector<std::pair<number_t, K>> &u, const std::map<number_t, T> &v, K a)
-
std::pair<Point, Point> commonPerpendicularOfStraightLines(const Point &Am, const Point &Ap, const Point &Bm, const Point &Bp)
-
common perpendicular of the straight lines defined respectively by the pair of points Am, Ap and Bm, Bp returns a pair of points defining the perpendicular the first point is on (AmAp), the second on (BmBp)
common perpendicular of the straight lines
-
bool compareGELTs(const GELT &a, const GELT &b)
-
Comparison function of two Gmsh elements according to type and domain numbers: a < b if its type number is smaller, then if its domain number is smaller.
-
inline bool compColSize(SuTermMatrix *sut1, SuTermMatrix *sut2)
-
compare SuTermMatrix regarding col sizes
-
TermVector complex(const TermVector &tv)
-
converts a real TermVector into a complex one
-
complex_t complex_const_fun(const Point &P, Parameters &pa)
-
Matrix<complex_t> complex_matrix_const_fun(const Point &P, Parameters &pa)
-
Vector<complex_t> complex_vector_const_fun(const Point &P, Parameters &pa)
-
inline complex_t complexRorC(const complex_t &c, const Vector<complex_t> &vc)
-
inline complex_t complexToRorC(const complex_t &c, const complex_t &cc)
-
inline complex_t complexToRorC(const complex_t &c, const Matrix<complex_t> &mc)
-
inline real_t complexToRorC(const complex_t &c, const Matrix<real_t> &mr)
-
inline real_t complexToRorC(const complex_t &c, const real_t &r)
-
inline real_t complexToRorC(const complex_t &c, const Vector<real_t> &vr)
-
template<class T>
inline T complexToT(const complex_t &c)
-
forced cast complex to any
-
template<>
inline real_t complexToT(const complex_t &c)
-
template<>
inline Matrix<real_t> complexToT(const complex_t &c)
-
template<>
inline Matrix<complex_t> complexToT(const complex_t &c)
-
void compNext(int n, int k, int a[], bool *more, int *h, int *t)
-
computes the compositions of the integer N into K parts
-
inline bool compNnzSutermMatrix(SuTermMatrix *sut1, SuTermMatrix *sut2)
-
compare SuTermMatrix regarding their numbers of non zero
-
Transformation composeCanonicalAndCanonical(const Transformation &t1, const Transformation &t2)
-
composition of canonical transformations
-
Transformation composeCanonicalAndComposite(const Transformation &t1, const Transformation &t2)
-
composition of a canonical transformation and a composite transformation
-
Transformation composeCompositeAndCanonical(const Transformation &t1, const Transformation &t2)
-
composition of a composite transformation and a canonical transformation
-
Transformation composeCompositeAndComposite(const Transformation &t1, const Transformation &t2)
-
composition of composite transformations
-
inline bool compRowSize(SuTermMatrix *sut1, SuTermMatrix *sut2)
-
compare SuTermMatrix regarding row sizes
-
void compute(Term &t)
-
user aliases to term(s) computation
-
template<typename T, typename K>
void computeBilAsLin(const std::pair<BasicLinearForm*, complex_t> &lf, Vector<T> &val, K &vt)
-
Computation of a linear form defined from a bilinear form and a TermVector to apply to l(v) = a(U,v) or l(u)=a(u,V) where U,V are some term vectors.
example: intg_gamma grad(U)|grad(v) dy U a termvector int_sigma intg_gamma (U*G)*v U a termvector
The algorithm is the most lazy one:
go to the TermMatrix machinery to compute matrix A from a(u,v)
do the product A*U or V*A
add the product result to vector val
- Parameters:
-
lf – a pair of BasicLinearForm and coefficient
val – vector of values to fill in
vt – type of value type
-
void computeGeometricalQuantities(const Point &S1, const Point &S2, const Point &S3, const Point &normalT, const Point &X, Vector<Point> &I, real_t &h, bool I3)
-
Internal functions
-
template<typename T, typename K, typename I>
void computeHMatrix(const SuBilinearForm &subf, HMatrix<T, I> &mat, K &vt, Space *space_u_p, Space *space_v_p, const Unknown *u_p, const TestFct *v_p)
-
IE computation of a scalar SuBiinearForm on a == unique domain == using HMatrix method type T: type of the matrix coefficient K: type of computation (real or complex) I: type of the tree node index of the HMatrix.
subf: a single unknown bilinear form defined on a unique domains pair (assumed) mat: the HMatrix, its structure is assumed to be up to date space_u_p, space_v_p: pointers to real u-space and real v-space vt: to pass as template the scalar type (real or complex)
-
template<typename T, typename K>
void computeMatel(LargeMatrix<T> &mat, std::vector<number_t> &adrs, bool sym, const Quadrature *quad, bool upmapdata, GeomMapData *mapdata, Vector<real_t> &nv, K coef, bool invJacobian, bool normalRequired, AlgebraicOperator aop, bool uonE1, bool vonE1, RefElement *relt_u, GeomElement *gelt_u, number_t side_u, MeshElement *melt_u, bool upmapdata_u, GeomMapData *mapdata_u, number_t nbc_u, number_t nbt_u, const OperatorOnUnknown &op_u, number_t ord_opu, bool mapsh_u, FEMapType femt_u, bool rotsh_u, bool changeSign_u, Vector<real_t> *sign_u, dimen_t dimfun_u, std::vector<ShapeValues> &shv_us, std::vector<number_t> &dofNum_u, RefElement *relt_v, GeomElement *gelt_v, number_t side_v, MeshElement *melt_v, bool upmapdata_v, GeomMapData *mapdata_v, number_t nbc_v, number_t nbt_v, const OperatorOnUnknown &op_v, number_t ord_opv, bool mapsh_v, FEMapType femt_v, bool rotsh_v, bool changeSign_v, Vector<real_t> *sign_v, dimen_t dimfun_v, std::vector<ShapeValues> &shv_vs, std::vector<number_t> &dofNum_v, const std::vector<number_t> &perm = std::vector<number_t>())
-
std::vector<Vector<real_t>> computeNormalsAt(const GeomDomain &dom, const std::vector<Point> &xs, ProjectorType pt = _noProjectorType, OrientationType orient = _undefOrientationType, const GeomDomain *gp = nullptr)
-
compute normals at some points of a GeomDomain
-
template<typename T, typename K>
void computePartialIE(const SuBilinearForm &subf, LargeMatrix<T> &mat, K &vt, const std::vector<number_t> &rowDofs, const std::vector<number_t> &colDofs, const std::vector<Element*> &rowElts, const std::vector<Element*> &colElts, IEcomputationParameters &ieparams, const std::list<std::multimap<real_t, IntgMeth>> &intgMaps, const std::vector<KernelOperatorOnUnknowns*> &kopregs, const std::vector<KernelOperatorOnUnknowns*> &kopsings, const std::map<Element*, GeoNumPair> &sidelts_u, const std::map<Element*, GeoNumPair> &sidelts_v, bool noUpdatedNormal, bool same_interpolation, bool sym)
-
partial IE computation of a scalar SuBilinearForm on a list of elements subf: a single unknown bilinear form defined on a unique domains pair (assumed) mat: matrix to build, with size rowDofs.size x colDofs.size rowDofs, colDofs: vector of row/col dofs involved rowElts, colElts: vector of row/col elements involved vt: to pass as template the scalar type (real or complex) ieparams: some precomputed IE information intgMaps: list of integration methods to be used (built outside) kopregs , kopsings: list of regular and singular kernels when required
NOTE: precomputation of normals, quadrature points, shape values, … has to be done before
-
template<typename K>
void computeQuadratureIE(const Element *elt_S, const Element *elt_T, const KernelOperatorOnUnknowns &kuv, Quadrature *quadx, Quadrature *quady, Matrix<K> &res, IEcomputationParameters &ieparams, Vector<K> &val_opu, Vector<K> &val_opv, Vector<K> &val_opk)
-
computation of elementary matrix of IE term using double quadrature (quadx, quady) intg elt_S intg elt_V opu(y) opk(x,y) opv(x) dy dx assuming precomputation of geometrical stuff (jacobian,diffelt, normals, …), shape values and mapping of quadrature points onto physical space
the template parameter K is always a scalar type (real_t or complex_t)
elt_S: element supporting u(y) elt_T: element supporting v(x) kuv: operator on kernel and unknowns opu(y) opk(x,y) opv(x) quadx: quadrature in x variable (i.e on elt_T) quady: quadrature in y variable (i.e on elt_S) ieparams: computation parameters val_opu, val_opv, val_opk: working vectors to store value of opu, opv and opk res: matrix result in SCALAR representation even the problem is a vector problem ! the calling function has to do the conversion from SCALAR MATRIX to MATRIX of MATRIX in case of vector problem
Assume here that either Kernel is Matrix or ShapeFunctions are vectors
-
template<typename T, typename K>
void computeRowColIE(const SuBilinearForm &subf, bool row, number_t rc, T *rowcol, number_t n, const std::vector<number_t> &crDofs, const std::vector<Element*> &crElts, const Space *rcSpace, IEcomputationParameters &ieparams, K &vt, const std::list<std::multimap<real_t, IntgMeth>> &intgMaps, const std::vector<KernelOperatorOnUnknowns*> &kopregs, const std::vector<KernelOperatorOnUnknowns*> &kopsings, const std::map<Element*, GeoNumPair> &sidelts_u, const std::map<Element*, GeoNumPair> &sidelts_v, bool noUpdatedNormal, bool same_interpolation, bool sym)
-
compute a row or a col of integral equation subf: bilinear form defining ie to compute row: true if a row computation, false if a col computation n: length of row/col rowcol: pointer to the first element of row or col, has to be correctly sized before rc: row/col index (>=1) crDofs: col/ row dof indices crElts: list of elements supporting col/row dofs rcSpace: space of row/col dof IEcomputationParameters: computation ie parameters intgMaps: list of integration methods to be used (built outside) kopregs , kopsings: list of regular and singular kernels when required
NOTE:for the moment this routine uses the general computePartialIE that involves LargeMatrix
-
template<typename K>
void computeSPfunByQuadrature(const std::vector<Vector<K>> &val, const SpectralBasis &spbasis, const std::vector<Point> &phyPts, const Quadrature &quad, std::vector<Vector<K>> &phi_w, bool isconj, const Function *mapto = nullptr)
-
utility for computeSP: compute sum_q[pq*phi_m(Xq)*wj(xq)] from wj(xq) GENERAL CASE (xq, Xq) : quadrature points in reference/physical space (phi_m) : basis functions from spectral basis (pq) : quadrature weights (wj(xq)) : FE shape functions at quadrature points (already computed)
val: wj(xq)) may be d-vector shape functions: val(q) = w11(xq),w12(xq), …, w1d(xq), w21(xq), … spbasis: spectral basis (function) phyPts: physical points quad: quadrature object mapto: if non zero, pointer to the map: domain -> reference domain of spectral basis
phi_w: computed values sum_q[pq*phi_m(Xq)*wj(xq)] when isconj=false sum_q[pq*conj(phi_m(Xq))*wj(xq)] when isconj=true
-
template<typename K>
void computeSPintByQuadrature(const std::vector<Vector<K>> &val, const SpectralBasis &spbasis, const std::vector<Point> &phyPts, const Quadrature &quad, const Element &elt, const Space *space_u, const GeomDomain *dom, const std::vector<ShapeValues> &shv, std::vector<Vector<K>> &phi_w, bool isconj, const Function *mapto = nullptr)
-
utility for computeSP, compute sum_q[pq*phi_m(Xq) op wj(xq)] from wj(xq) (INTERPOLATED CASE, interpolated spectral basis function) (xq, Xq) : quadrature points in reference/physical space (phi_m) : basis functions from spectral basis (pq) : quadrature weights (wj(xq)) : FE shape functions at quadrature points (already computed) op: * or |, automatically detected regarding structure of SpectralBasis
phi_m(Xq) is computed by interpolation: sum_s phi_ms tau_s(xq) where phi_ms are components of phi_m in current element two cases occur:
same interpolation (common case) -> tau_s = wj
different interpolation -> computation of tau_s
val: wj(xq)) may be d-vector shape functions: val(q) = w11(xq),w12(xq), …, w1d(xq), w21(xq), … spbasis: spectral basis (vector) phyPts: physical points quad: quadrature object mapto: if non zero, pointer to the map: domain -> reference domain of spectral basis elt: current element space_u: space dom: current domain shv: shapevalues
phi_w: computed values Vjm=sum_q[pq*phi_m(Xq) op wj(xq)] ( say phi_w(j)=[Vj1,Vj2, …, Vjn])
-
template<typename K>
void computeSPOperator(const OperatorOnUnknown &op, const SpectralBasis *spbasis, const Point &x, ValueType vtphi, number_t nbfun, dimen_t dimfun, Vector<K> &val, const Vector<real_t> *np = nullptr)
-
compute values of operator on spectral unknown at quadrature point, say op(phi_n)(x) with (phi) i=1,n the spectral functions and x a quadrature point in physical space
op: operator on unknown basis: spectral basis associated to unknown x: point where operator is evaluated (in physical space of spectral functions) vtphi: value type of basis function nbfun: number of function dimfun: dimension of function val: computed values as a vector of vectors: val = (op(phi_n)(x)) i=1,n phyPoints: quadrature points in physical space
NOTE: operator with derivatives are only supported with ANALYTICAL spectral functions in Function defining them, user has to provide derivatives using the parameter “derivative” and its value Number(_dx), Number(_dxx), ….
operator with derivatives are not yet handled for VECTOR spectral functions
-
Matrix<complex_t> conj(const Matrix<complex_t> &cB)
-
conjugate a complex matrix
conjugate complex matrix
-
Matrix<real_t> conj(const Matrix<real_t> &cB)
-
conjugate a real matrix (do nothing)
conjugate real matrix (compatibility)
-
template<typename K>
MatrixEigenDense<K> conj(const MatrixEigenDense<K> &mat)
-
MatrixEntry conj(const MatrixEntry &me)
-
return the conjugate of a matrix entry
-
inline real_t conj(const real_t&)
-
inline SymbolicFunction &conj(const SymbolicFunction &f)
-
TermMatrix conj(const TermMatrix &tm)
-
TermVector conj(const TermVector &tv)
-
conjugate TermVector
-
template<typename K>
VectorEigenDense<K> conj(const VectorEigenDense<K> &v)
-
Conjugate a vector.
- Parameters:
-
v – [in] source vector
- Returns:
-
conjugated vector
-
OperatorOnFunction &conj(Function&)
-
conjugate f
-
OperatorOnKernel &conj(Kernel&)
-
conjugate k
-
OperatorOnFunction &conj(OperatorOnFunction&)
-
conjugate opf
-
OperatorOnKernel &conj(OperatorOnKernel&)
-
conjugate opk
-
SymbolicTermMatrix &conj(SymbolicTermMatrix &S)
- template<typename T> inline Function & conj (T(fun)(const Point &, const Point &, Parameters &))
- template<typename T> inline Function & conj (T(fun)(const Point &, Parameters &))
- template<typename T> inline Function & conj (T(fun)(const Vector< Point > &, const Vector< Point > &, Parameters &))
- template<typename T> inline Function & conj (T(fun)(const Vector< Point > &, Parameters &))
-
inline Unknown &conj(TestFunction &v)
-
template<typename T1_iterator, typename R_iterator>
void conjTpl(T1_iterator b1, T1_iterator e1, R_iterator Rb)
-
returns complex conjugate of vector entries: R[i] = conj(T1[i])
-
void constructorError()
-
message sent when in trouble in object constructor
-
complex_t continuedFractionOfE1(const complex_t &z)
-
continued fraction in E1 formula (used for ‘large’ z)
-
int convertmeshfile(const string_t &inputfilename, string_t &outputfilename)
-
inline SuTermVector cos(const SuTermVector &s)
-
inline SymbolicFunction &cos(const SymbolicFunction &f)
-
inline TermVector cos(const TermVector &s)
-
inline SuTermVector cosh(const SuTermVector &s)
-
inline SymbolicFunction &cosh(const SymbolicFunction &f)
-
inline TermVector cosh(const TermVector &s)
-
inline bool cpp11()
-
real_t cpuTime()
-
returns user time (“cputime”) interval since last runtime ‘call’ according to unit defined in Time::deltaCpuTime
returns user time (“cputime”) interval in sec.
since last runtime ‘call’
-
real_t cpuTime(const string_t &comment, CoutStream &out)
-
real_t cpuTime(const string_t &comment, PrintStream &out)
-
real_t cpuTime(const string_t &comment, std::ostream &out = std::cout)
-
returns user time (“cputime”) interval in sec.
since last runtime ‘call’ and prints it with comment
-
GeomDomain &crack(const GeomDomain &side1, const GeomDomain &side2)
-
defined a crack domain from both sides of the crack in fact, define the crack domain as side 1
defined a crack domain from both sides of the crack (alias)
-
void crack(Geometry &g1, CrackType ct = _closedCrack, string_t domNameToOpen = string_t())
-
user shortcut to crack one geometry
-
void crack(Geometry &g1, Geometry &g2, CrackType ct = _closedCrack, string_t domNameToOpen = string_t())
-
user shortcut to crack 2 geometries
-
void crack(Geometry &g1, Geometry &g2, Geometry &g3, CrackType ct = _closedCrack, string_t domNameToOpen = string_t())
-
user shortcut to crack 3 geometries
-
void crack(Geometry &g1, Geometry &g2, Geometry &g3, Geometry &g4, CrackType ct = _closedCrack, string_t domNameToOpen = string_t())
-
user shortcut to crack 4 geometries
-
void crack(Geometry &g1, Geometry &g2, Geometry &g3, Geometry &g4, Geometry &g5, CrackType ct = _closedCrack, string_t domNameToOpen = string_t())
-
user shortcut to crack 5 geometries
-
void crack(Geometry &g1, Geometry &g2, Geometry &g3, Geometry &g4, Geometry &g5, Geometry &g6, CrackType ct = _closedCrack, string_t domNameToOpen = string_t())
-
user shortcut to crack 6 geometries
-
void crack(Geometry &g1, Geometry &g2, Geometry &g3, Geometry &g4, Geometry &g5, Geometry &g6, Geometry &g7, CrackType ct = _closedCrack, string_t domNameToOpen = string_t())
-
user shortcut to crack 7 geometries
-
std::vector<DofComponent> createCdofs(const Unknown *u, const std::vector<number_t> &dofs)
-
create cdofs from unknown dofs
-
MatrixStorage *createMatrixStorage(StorageType st, AccessType at, StorageBuildType sb, number_t nbr, number_t nbc, const std::vector<std::vector<number_t>> &indices, const string_t &idu)
-
create matrix storage from indices (vector of column indices for each row)
-
void createPath(Node<GeomElement>*, std::map<GeomElement*, bool>&, std::map<string_t, std::list<GeomElement*>>&)
-
utility
-
void createSideEltIndex(const std::vector<GeomElement*> &elements, std::map<string_t, GeomElement*> &sideEltIndex)
-
create an index of all side elements in given side element list, do not clear current sideEltIndex !
create the side index map of side elements of a list of elements
-
void createSideIndex(const MeshDomain &mdom, std::map<string_t, std::vector<GeoNumPair>> &sideIndex)
-
create an index of all sides of a meshDomain similar to previous one, but dedicated to any domain
create the side index map of a MeshDomain
-
void createSideIndex(const std::vector<GeomElement*> &elements, std::map<string_t, std::vector<GeoNumPair>> &sideIndex)
-
create an index of all sides of a list of elements very similar to buildSides function except the fact that no new side element are created do not clear current sideIndex !
create the side index map of a list of elements
-
void createTeXFile(const string_t &TeXFilename, subdivision::SubdivisionMesh *TM_p, const float psi, const float theta, const number_t nbviews, const std::string &DimProj, const bool withInterface, const bool withElems)
-
create TeX file, using Fig4TeX macros, to draw the mesh
-
complex_t crossProduct(const complex_t &x, const complex_t &y)
-
complex_t crossProduct(const complex_t &x, const real_t &y)
-
complex_t crossProduct(const real_t &x, const complex_t &y)
-
real_t crossProduct(const real_t &x, const real_t &y)
-
template<typename K>
std::vector<PolynomialT<K>> crossProduct(const std::vector<PolynomialT<K>> &p, const std::vector<K> &v)
-
template<typename K>
std::vector<PolynomialT<K>> crossProduct(const std::vector<PolynomialT<K>> &p, const std::vector<PolynomialT<K>> &q)
-
template<typename T>
std::vector<T> crossProduct(const std::vector<T> &u, const std::vector<T> &v)
-
crossproduct of two vectors (dimension 2 and 3), be care in 2D return a 1-vector
-
Vector<complex_t> crossProduct(const Vector<complex_t> &u, const Vector<real_t> &v)
-
Specialization complex_t/real_t of cross product.
-
template<typename K, typename IteratorV, typename IteratorR>
void crossProduct(const Vector<K> &u, const IteratorV &itv, IteratorR &itr)
-
cross product with vector and iterator in 3D and 2D (return a scalar)
-
template<typename K>
Vector<K> crossProduct(const Vector<K> &u, const Vector<K> &v)
-
cross product in 3D
-
real_t crossProduct2D(const Point &O, const Point &A, const Point &B)
-
returns the cross product OAxOB (2D)
-
template<typename K>
K crossProduct2D(const Vector<K> &u, const Vector<K> &v)
-
cross product in 2D, return a scalar
-
template<typename K>
std::vector<PolynomialT<K>> curl(const MonomialT<K> &m, dimen_t d = 3)
-
template<typename K>
PolynomialsBasisT<K> curl(const PolynomialsBasisT<K> &ps)
-
template<typename K>
std::vector<PolynomialT<K>> curl(const PolynomialT<K> &p, dimen_t d = 3)
-
template<typename K>
std::vector<PolynomialT<K>> curl(const std::vector<PolynomialT<K>> &p)
-
OperatorOnUnknown &curl(const Unknown &un)
-
OperatorOnKernel &curl_x(const Kernel&)
-
curl_x(k)
-
OperatorOnKernel &curl_x(OperatorOnKernel&)
-
curl_x(opk)
-
OperatorOnKernel &curl_y(const Kernel&)
-
curl_y(k)
-
OperatorOnKernel &curl_y(OperatorOnKernel&)
-
curl_y(opk)
-
OperatorOnUnknown &curlG(const Unknown &un, const complex_t &ax, const complex_t &ay, const complex_t &az, const complex_t &at)
-
OperatorOnUnknown &curlS(const Unknown &un)
-
inline number_t currentThread()
-
if omp is available, return the current thread number else return 0
-
inline number_t curThread()
-
if omp is available, return the current thread number else return 0
-
Vector<real_t> cylinderSidePartGeodesic(const Point &P, Parameters ¶ms, DiffOpType dif)
-
Vector<real_t> cylinderSidePartGeodesicCurvatures(const Point &p, const Point &d, bool fromParameters, Parameters &pars)
-
Vector<real_t> cylinderSidePartGeodesicNormal(const Point &p, bool fromParameters, Parameters &pars)
-
OperatorOnUnknown &d0(const Unknown &un)
-
OperatorOnUnknown &d1(const Unknown &un)
-
OperatorOnUnknown &d11(const Unknown &un)
-
OperatorOnUnknown &d12(const Unknown &un)
-
OperatorOnUnknown &d13(const Unknown &un)
-
OperatorOnUnknown &d2(const Unknown &un)
-
OperatorOnUnknown &d22(const Unknown &un)
-
OperatorOnUnknown &d23(const Unknown &un)
-
OperatorOnUnknown &d2G(const Unknown &un, const complex_t &axx, const complex_t &axy, const complex_t &ayy, const complex_t &axz, const complex_t &ayz, const complex_t &azz)
-
OperatorOnUnknown &d2G(const Unknown &un, const Matrix<complex_t> &a)
-
OperatorOnUnknown &d3(const Unknown &un)
-
OperatorOnUnknown &d33(const Unknown &un)
-
real_t defaultColoringRule(const GeomElement &gelt, const std::vector<real_t> &val)
-
the default GeomElement coloring rule is the following let np the number of strictly positive values (v_i) on the n vertices of the geomelement if(np>n/2) then color =1 else color =0 for a triangle: color is 1 if at least 2 vertex values are >0 for a quadrangle: color is 1 if at least 3 vertex values are >0 for a tetrahedron: color is 1 if at least 3 vertex values are >0 for a hexahedron: color is 1 if at least 5 vertex values are >0
default Geomelement coloring rule
gelt: geom element val: real values on vertices
- Parameters defaultParameters (0)
-
default ParameterList object used as default argument in Function constructor
-
real_t defaultVectorColoringRule(const GeomElement &gelt, const std::vector<Vector<real_t>> &val)
-
default Geomelement vector coloring rule
-
void defineMap(const GeomDomain&, const GeomDomain&, const Function&, bool nearest = false)
-
define a map between 2 geomdomains, default name
-
void defineMap(const GeomDomain&, const GeomDomain&, const Function&, const string_t&, bool nearest = false)
-
define a map between 2 geomdomains with explicit name
- AngleUnit deg_ (_deg, defaultAngleUnit, 0.)
-
void deleteFunction(void *p)
-
void deleteGeomDomain(void *p)
-
void deleteIntegrationMethod(void *p)
-
void deleteIntegrationMethods(void *p)
-
void deleteParametrization(void *p)
-
void deleteSpline(void *p)
-
void deleteTermVectors(void *p)
-
void deleteTransformation(void *p)
-
string_t delSpace(const string_t &s)
-
convert “ a b c d e f “ to “abcefd”
delete all white space from string_t
-
SymbolicFunction &derivative(const SymbolicFunction &f, const SymbolicFunction &v)
-
SymbolicFunction &derivative(const SymbolicFunction &f, VariableName v)
-
template<typename K>
PolynomialT<K> derivative(VariableName vn, const MonomialT<K> &m)
-
template<typename K>
PolynomialT<K> derivative(VariableName vn, const PolynomialT<K> &p)
-
template<typename K>
std::vector<PolynomialT<K>> derivative(VariableName vn, const std::vector<PolynomialT<K>> &ps)
-
inline complex_t diag(const complex_t&)
-
inline real_t diag(const real_t&)
-
template<typename K>
void diag(Matrix<K> &m)
-
change matrix into diagonal matrix made of diagonal of matrix
-
template<typename T>
LargeMatrix<T> diagonalMatrix(const LargeMatrix<T> &mat, const T v)
-
template<typename T>
LargeMatrix<T> diagonalMatrix(StorageType st, AccessType at, number_t nbr, number_t nbc, const T v)
-
complex_t diGamma(const complex_t &z)
-
real_t diGamma(int_t n)
-
return \(-gamma + \sum_1^{n-1} 1/n\) where gamma is Euler-Mascheroni constant
-
real_t diGamma(real_t x)
-
template<typename K>
std::pair<dimen_t, dimen_t> dimsOf(const SparseMatrix<K> &v)
-
template<typename T>
std::pair<dimen_t, dimen_t> dimsOf(const Vector<T> &v)
-
useful dimension functions
-
TermVectors directSolve(TermMatrix &A, const std::vector<TermVector> &Bs, bool keepA)
-
TermVector directSolve(TermMatrix &A, const TermVector &B, bool keepA)
-
solve linear system by direct method, trying to find the well adapted direct method if A is already factorized goto upper-lower solver (factSolve) if umfpack is available, it is used (umfpackSolve) if A is single unknown dense matrix use pivoting gauss elimination process (gaussSolve) else factorize LU, LDLt or LDL* and goto upper-lower solver (factSolve)
if keepA is false (default) the matrix A is modified else it is not modified
-
TermMatrix directSolve(TermMatrix &A, TermMatrix &B, KeepStatus k)
-
string_t dirname(const string_t &f)
-
return dirname of a file name using last slash as delimiter
-
real_t dist(const BoundingBox &bb1, const BoundingBox &bb2)
-
distance from two bounding boxes
-
real_t dist(const Point &p, const Point &q)
-
returns Point as Point in polar coordinates/cylindrical (r,theta,z) r=sqrt(x*x+y*y) theta = atan2(y,x) in ]-pi,pi], z unchanged reverse map: x= r cos(theta) y = r sin(theta) z= z
returns the euclidian distance between 2 points
-
real_t distance(const MeshElement &elt1, const MeshElement &elt2)
-
distance from two MeshElement, assuming not intersection and using first order, i.e vertices under these assumptions dist(e1,e2)= min{dist(p1,p2), p1 in e1, p2 in e2} = min{dist(p1,p2), p1 any vertex of e1, p2 any vertex of e2}
distance from two MeshElement
-
template<typename K>
PolynomialBasisT<K> div(const PolynomialsBasisT<K> &ps)
-
template<typename K>
PolynomialT<K> div(const std::vector<PolynomialT<K>> &p)
-
OperatorOnUnknown &div(const Unknown &un)
-
OperatorOnKernel &div_x(const Kernel&)
-
grad_x(k)
-
OperatorOnKernel &div_x(OperatorOnKernel&)
-
grad_x(opk)
-
OperatorOnKernel &div_y(const Kernel&)
-
grad_y(k)
-
OperatorOnKernel &div_y(OperatorOnKernel&)
-
grad_y(opk)
-
OperatorOnUnknown &divG(const Unknown &un, const complex_t &ax, const complex_t &ay, const complex_t &az, const complex_t &at)
-
OperatorOnUnknown &divS(const Unknown &un)
-
bool doesQuadrangleIntersectsQuadrangle(const Point &P, const Point &Q, const Point &R, const Point &S, const Point &A, const Point &B, const Point &C, const Point &D, real_t tol)
-
determines if quadrangles PQRS and ABCD have a intersection or not
-
bool doesSegmentCrossesQuadrangle(const Point &P, const Point &Q, const Point &A, const Point &B, const Point &C, const Point &D, real_t tol)
-
determines if a segment [PQ] and a quadrangle ABCD have a unique intersection or not
-
bool doesSegmentCrossesSegment(const Point &P, const Point &Q, const Point &A, const Point &B, real_t tol)
-
determines if 2 segments [PQ] and [AB] have a unique intersection or not (2D or 3D)
-
bool doesSegmentCrossesSegment2D(const Point &P, const Point &Q, const Point &A, const Point &B, real_t tol)
-
determines if 2 2D segments [PQ] and [AB] have a unique intersection or not
determines if 2 segments [PQ] and [AB] have a intersection or not (faster 2D version)
-
bool doesSegmentCrossesTriangle(const Point &P, const Point &Q, const Point &A, const Point &B, const Point &C, real_t tol)
-
determines if a segment [PQ] and a triangle ABC have a unique intersection or not
-
bool doesSegmentIntersectsQuadrangle(const Point &P, const Point &Q, const Point &A, const Point &B, const Point &C, const Point &D, real_t tol)
-
determines if a segment [PQ] and a triangle ABC have a intersection or not
-
bool doesSegmentIntersectsTriangle(const Point &P, const Point &Q, const Point &A, const Point &B, const Point &C, real_t tol)
-
determines if segments [PQ] and [AB] have a intersection or not
-
bool doesTriangleIntersectsQuadrangle(const Point &P, const Point &Q, const Point &R, const Point &A, const Point &B, const Point &C, const Point &D, real_t tol)
-
determines if a triangle PQR and a quadrangle ABCD have a intersection or not
-
bool doesTriangleIntersectsTriangle(const Point &P, const Point &Q, const Point &R, const Point &A, const Point &B, const Point &C, real_t tol)
-
determines if triangles PQR and ABC have a intersection or not
-
std::vector<Point> dofCoords(Space &sp, const GeomDomain &dom)
-
list of coordinates of ponctual dofs of Space on a given domain
-
inline const GeomDomain *domainFromParameters(Parameters &pars)
-
inline number_t domainIdFromParameters(Parameters &pars)
-
const DomainMap *domainMap(const GeomDomain&, const GeomDomain&)
-
find DomainMap from dom1 to dom2
-
inline string_t domainNameFromParameters(Parameters &pars)
-
extract GeomDomain or GeomElement information from Parameters
Note
if pointer parameter does not exist, it is created with 0 value (see Parameters.get member function)
-
inline std::vector<number_t> domainsFromLevelSet(TermVector &tv, number_t mainDomNum, number_t insideDomNum, bool outside = true)
-
std::vector<number_t> domainsFromLevelSet(TermVector &tv, number_t mainDomNum, std::vector<number_t> insideDomNums, bool outside)
-
main routine for levelset method
- Parameters:
-
tv – TermVector containing the criteria
mainDomNum – domain number of the main domain (the domain number is the index in Mesh::domains_)
insideDomNums – domain numbers of the obstacles to find by the levelset method (one or more)
outside – if true, elements of interface between main domain and inner domains (obstacles) are considered in the inner domain, in the main domain otherwise.
-
Vector<real_t> domainTranslation(const Point&, Parameters &pa = defaultParameters)
-
default translation for domain map
-
complex_t dot(const complex_t &x, const complex_t &y)
-
complex_t dot(const complex_t &x, const real_t &y)
-
complex_t dot(const real_t &x, const complex_t &y)
-
real_t dot(const real_t &x, const real_t &y)
-
for template compilation reasons, fake definition of dot and crossproduct in 1D
-
template<typename K>
PolynomialT<K> dot(const std::vector<PolynomialT<K>> &p, const std::vector<K> &v)
-
template<typename K>
PolynomialT<K> dot(const std::vector<PolynomialT<K>> &p, const std::vector<PolynomialT<K>> &q)
-
complex_t dot(const Vector<complex_t> &u, const Vector<real_t> &v)
-
Specialization of dot (complex_t real_t)
-
template<typename K>
K dot(const Vector<K> &u, const Vector<K> &v)
-
inner product for real and complex
-
template<typename K1, typename K2>
complex_t dotC(const Vector<K1> &vecFirst, const Vector<K2> &vecSecond)
-
Hermitian Inner product.
-
complex_t dotC(const Vector<real_t> &vecFirst, const Vector<real_t> &vecSecond)
-
Specialization of dotC (real_t real_t) and (complex_t real_t)
-
template<typename T, typename K>
T dotProduct(const std::vector<std::pair<number_t, T>> &u, const std::map<number_t, K> &v)
-
complex_t dotRC(const TermVector &tv1, const TermVector &tv2)
-
inner product when one TermVector is complex
-
template<typename K1, typename K2>
complex_t dotRC(const Vector<K1> &vecFirst, const Vector<K2> &vecSecond)
-
Inner product with COMPLEX result (not hermitian product)
-
complex_t dotRC(const Vector<real_t> &vecFirst, const Vector<real_t> &vecSecond)
-
Specialization of dotRC (real_t real_t)
-
complex_t dotRC(const VectorEntry&, const VectorEntry&)
-
same as inner product of two vectorentry’s
-
OperatorOnUnknown &dt(const Unknown &un)
-
std::vector<DofComponent> dualDofComponents(const std::vector<DofComponent> &cdofs)
-
create dual cdofs list from cdofs list
-
inline TestFunctions dualOf(const PCollection<Unknown> &us, const Strings &names = Strings())
-
to build a list of dual xlifepp::TestFunction of a list of xlifepp::Unknown
-
template<typename K>
PolynomialT<K> dx(const MonomialT<K> &m)
-
template<typename K>
PolynomialBasisT<K> dx(const PolynomialBasisT<K> &ps)
-
template<typename K>
PolynomialsBasisT<K> dx(const PolynomialsBasisT<K> &ps)
-
template<typename K>
PolynomialT<K> dx(const PolynomialT<K> &p)
-
template<typename K>
std::vector<PolynomialT<K>> dx(const std::vector<PolynomialT<K>> &ps)
-
OperatorOnUnknown &dx(const Unknown &un)
-
OperatorOnUnknown &dxx(const Unknown &un)
-
OperatorOnUnknown &dxy(const Unknown &un)
-
OperatorOnUnknown &dxz(const Unknown &un)
-
template<typename K>
PolynomialT<K> dy(const MonomialT<K> &m)
-
template<typename K>
PolynomialBasisT<K> dy(const PolynomialBasisT<K> &ps)
-
template<typename K>
PolynomialsBasisT<K> dy(const PolynomialsBasisT<K> &ps)
-
template<typename K>
PolynomialT<K> dy(const PolynomialT<K> &p)
-
template<typename K>
std::vector<PolynomialT<K>> dy(const std::vector<PolynomialT<K>> &ps)
-
OperatorOnUnknown &dy(const Unknown &un)
-
OperatorOnUnknown &dyy(const Unknown &un)
-
OperatorOnUnknown &dyz(const Unknown &un)
-
template<typename K>
PolynomialT<K> dz(const MonomialT<K> &m)
-
template<typename K>
PolynomialBasisT<K> dz(const PolynomialBasisT<K> &ps)
-
template<typename K>
PolynomialsBasisT<K> dz(const PolynomialsBasisT<K> &ps)
-
template<typename K>
PolynomialT<K> dz(const PolynomialT<K> &p)
-
template<typename K>
std::vector<PolynomialT<K>> dz(const std::vector<PolynomialT<K>> &ps)
-
OperatorOnUnknown &dz(const Unknown &un)
-
OperatorOnUnknown &dzz(const Unknown &un)
-
void e1Test(std::ostream&)
-
For tests.
-
complex_t e1z(const complex_t &z)
-
return E1(z)
-
template<typename Polygon>
std::vector<size_t> earcut(const Polygon &poly)
-
template<typename P>
std::vector<std::vector<size_t>> earcutTriangulation(const std::vector<P> &vertices)
-
template<class ST_>
number_t *edgeNumbering()
-
Termination of the construction of a mesh object of 2D elements by transferring data from a subdivision::xxxMesh object into XLiFE++ objects.
-
template<>
number_t *edgeNumbering<subdivision::Quadrangle>()
-
template<>
number_t *edgeNumbering<subdivision::Triangle>()
-
template<typename ST>
number_t eigenDavidsonSolve(const LargeMatrix<ST> *pA, const LargeMatrix<ST> *pB, std::vector<std::pair<complex_t, Vector<complex_t>>> &res, number_t nev, real_t tol, string_t which, bool isInverted, FactorizationType fac, bool isShift)
-
Resolve an eigen problem with block davidson method.
- Parameters:
-
pA – [in] Pointer to large matrix A of the eigen problem A*X = lambda*B*X. It MUSTN’T be nullptr
pB – [in] Pointer to large matrix B of the eigen problem A*X = lambda*B*X. If it’s nullptr. Eigen problem is standard: A*X=lambda*X
res – [inout] result
nev – [in] The number of eigen values and eigenSolver searched for
tol – [in] Tolerance
which – [in] Specification of which eigen values are returned. Largest-LM, Smallest-SM,
isInverted – [in] true if inverted matrix
fac – [in] factorization type
isShift – [in] true if eigen problem with shift or not
-
EigenElements eigenInternGen(TermMatrix *pA, TermMatrix *ptB, number_t nev, string_t which, real_t tol, EigenComputationalMode eigCompMode, complex_t sigma, bool isShift, string_t nam, EigenSortKind esortk = _incr_module)
-
Internal eigen solver.
-
EigenElements eigenInternSolve(TermMatrix *A, TermMatrix *B, const std::vector<Parameter> &ps)
-
Main entry point for intern eigenvalue solver.
-
template<typename ST>
number_t eigenKrylovSchurSolve(const LargeMatrix<ST> *pA, const LargeMatrix<ST> *pB, std::vector<std::pair<complex_t, Vector<complex_t>>> &res, number_t nev, real_t tol, string_t which, bool isInverted, FactorizationType fac, bool isShift)
-
Resolve an eigen problem with block Krylov-Schur method.
- Parameters:
-
pA – [in] Pointer to large matrix A of the eigen problem A*X = lambda*B*X. It MUSTN’T be nullptr
pB – [in] Pointer to large matrix B of the eigen problem A*X = lambda*B*X. If it’s nullptr. Eigen problem is standard: A*X=lambda*X
res – [inout] result
nev – [in] The number of eigen values and eigenSolver searched for
tol – [in] Tolerance
which – [in] Specification of which eigen values are returned. Largest-LM, Smallest-SM,
isInverted – [in] true if inverted matrix
fac – [in] factorization type
isShift – [in] true if eigen problem with shift or not
-
EigenElements eigenSolve(TermMatrix *A, TermMatrix *B, std::vector<Parameter> ps)
-
Main entry point for non specific eigenvalue solver.
-
template<>
void eigs(const complex_t *A, number_t m, complex_t *Xs, complex_t *ls)
-
template<>
void eigs(const complex_t *A, number_t m, complex_t *Xs, complex_t *ls)
-
template<typename T>
void eigs(const Matrix<T> &A, const Matrix<T> &B, Vector<complex_t> &ls, Matrix<complex_t> &Xs)
-
computation of generalized eigen values A*X=lambda*B*X
eigen vectors are stored by row in Xs matrix !
currently works only for REAL matrices
-
template<typename T>
void eigs(const Matrix<T> &A, const Matrix<T> &B, Vector<complex_t> &ls, Vector<Vector<complex_t>> &Xs)
-
template<typename T>
void eigs(const Matrix<T> &A, Vector<complex_t> &ls, Matrix<complex_t> &Xs)
-
computation of eigen values A*X=lambda*X
eigen vectors are stored by row in Xs matrix !
-
template<typename T>
void eigs(const Matrix<T> &A, Vector<complex_t> &ls, Vector<Vector<complex_t>> &Xs)
-
template<>
void eigs(const real_t *A, const real_t *B, number_t m, complex_t *Xs, complex_t *ls)
-
template<>
void eigs(const real_t *A, const real_t *B, number_t m, complex_t *Xs, complex_t *ls)
-
template<>
void eigs(const real_t *A, number_t m, complex_t *Xs, complex_t *ls)
-
template<>
void eigs(const real_t *A, number_t m, complex_t *Xs, complex_t *ls)
-
template<typename T>
void eigs(const T *A, number_t m, complex_t *Xs, complex_t *ls)
-
general template eigenvector computation using Eigen, assuming A, U are pointers to first value of DENSE ROW matrix A, B: pointers to dense row squared matrix m: matrix size Xs: pointer to a dense row matrix, storing eigen vectors ls: pointer to a vector, storing eigen values
-
template<typename Ta, typename Tb>
void eigs(const Ta *A, const Tb *B, number_t m, complex_t *Xs, complex_t *lambda)
-
complex_t eInz(const complex_t &z)
-
return \(E1(z) + gamma + log(z) = \sum_{n>0} (-z)^n / n n!\)
-
real_t elapsedTime()
-
returns elapsed time interval since last runtime ‘call’ according to unit defined in Time::deltaTime
returns elapsed time interval in sec.
since last runtime ‘call’
-
real_t elapsedTime(const string_t &comment, CoutStream &out)
-
real_t elapsedTime(const string_t &comment, PrintStream &out)
-
real_t elapsedTime(const string_t &comment, std::ostream &out = std::cout)
-
returns elapsed time interval in sec.
since last runtime ‘call’ and prints it with comment
-
OperatorOnUnknown &epsilon(const Unknown &un)
-
OperatorOnUnknown &epsilonG(const Unknown &un, const complex_t &id, const complex_t &ax, const complex_t &ay, const complex_t &az)
-
OperatorOnUnknown &epsilonR(const Unknown &un)
-
std::vector<real_t> eqtOfPlane(const Point &S1, const Point &S2, const Point &S3)
-
returns coefficients (a,b,c,d) of the equation of the plane (ax+by+cz+d=0) defined by the 3 non aligned given points S1, S2, and S3
returns equation of the plane defined by the 3 non aligned given points
-
complex_t erf(complex_t z)
-
template<typename T>
void error(const string_t &msgIds, const T &v, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7>
void error(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
void error(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2, typename T3, typename T4, typename T5>
void error(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2, typename T3, typename T4>
void error(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2, typename T3>
void error(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2>
void error(const string_t &msgIds, const T1 &v1, const T2 &v2, Messages *msgSrc = theMessages_p)
-
void error(const string_t &msgIds, MsgData &msgData, Messages *msgSrc)
-
shortcut of msg for error type messages
throw error messages
-
template<typename T>
Vector<T> euler(T &(*f)(real_t, const T &y, T &fty), real_t a, real_t b, real_t dt, const T &y0)
-
template<typename K>
std::vector<K> eval(const std::vector<PolynomialT<K>> &p, const K &x1, const K &x2 = K(1), const K &x3 = K(1))
-
template<>
inline void evalContractedProduct(const Matrix<real_t> &mat, const Vector<complex_t> &v, dimen_t &d, dimen_t &n, number_t m, Vector<real_t> &res)
-
template<typename T, typename R>
inline void evalContractedProduct(const Matrix<T> &mat, const Vector<R> &v, dimen_t &d, dimen_t &n, number_t m, Vector<T> &res)
-
Contracted product.
-
template<>
inline void evalCrossProduct(const Vector<real_t> &vec, const Vector<complex_t> &v, dimen_t &d, dimen_t &n, number_t m, Vector<real_t> &res, bool right)
-
template<typename T, typename R>
void evalCrossProduct(const Vector<T> &vec, const Vector<R> &v, dimen_t &d, dimen_t &n, number_t m, Vector<T> &res, bool right)
-
Cross product.
-
inline complex_t evalFun(SymbolicOperation op, const complex_t &z, const complex_t &p = 0.)
-
inline real_t evalFun(SymbolicOperation op, const real_t &x, const real_t &p = 0.)
-
template<>
inline void evalInnerProduct(const Vector<real_t> &vec, const Vector<complex_t> &v, dimen_t &d, dimen_t &n, number_t m, Vector<real_t> &res)
-
template<typename T, typename R>
void evalInnerProduct(const Vector<T> &vec, const Vector<R> &v, dimen_t &d, dimen_t &n, number_t m, Vector<T> &res)
-
Inner product.
-
template<>
inline void evalMatrixMatrixProduct(const Matrix<real_t> &vec, const Vector<complex_t> &v, dimen_t &d, dimen_t &n, number_t m, Vector<real_t> &res)
-
template<typename T, typename R>
inline void evalMatrixMatrixProduct(const Matrix<T> &mat, const Vector<R> &v, dimen_t &d, dimen_t &n, number_t m, Vector<T> &res)
-
template<>
inline void evalMatrixMatrixProduct2(const Matrix<real_t> &mat, const Vector<complex_t> &v, dimen_t &d, dimen_t &n, number_t m, Vector<real_t> &res)
-
template<typename T, typename R>
inline void evalMatrixMatrixProduct2(const Matrix<T> &mat, const Vector<R> &v, dimen_t &d, dimen_t &n, number_t m, Vector<T> &res)
-
template<>
inline void evalMatrixVectorProduct(const Matrix<real_t> &mat, const Vector<complex_t> &v, dimen_t &d, dimen_t &n, number_t m, Vector<real_t> &res)
-
template<typename T, typename R>
inline void evalMatrixVectorProduct(const Matrix<T> &mat, const Vector<R> &v, dimen_t &d, dimen_t &n, number_t m, Vector<T> &res)
-
Matrix product.
-
template<>
inline void evalMatrixVectorProduct(const Vector<real_t> &vec, const Vector<complex_t> &v, dimen_t &d, dimen_t &n, number_t m, Vector<real_t> &res)
-
template<typename T, typename R>
inline void evalMatrixVectorProduct(const Vector<T> &vec, const Vector<R> &v, dimen_t &d, dimen_t &n, number_t m, Vector<T> &res)
-
Matrix product using vector representation of matrix.
-
inline complex_t evalOp(SymbolicOperation op, const complex_t &x, const complex_t &y)
-
inline real_t evalOp(SymbolicOperation op, const real_t &x, const real_t &y)
-
template<>
inline void evalScalarProduct(const Matrix<real_t> &mat, const Vector<complex_t> &v, dimen_t &d, dimen_t &n, number_t m, Vector<real_t> &res)
-
template<typename T, typename R>
inline void evalScalarProduct(const Matrix<T> &mat, const Vector<R> &v, dimen_t &d, dimen_t &n, number_t m, Vector<T> &res)
-
template<>
inline void evalScalarProduct(const real_t &val, const Vector<complex_t> &v, Vector<real_t> &res)
-
template<typename T, typename R>
inline void evalScalarProduct(const T &val, const Vector<R> &v, Vector<T> &res)
-
Product by a scalar.
-
template<>
inline void evalScalarProduct(const Vector<real_t> &vec, const Vector<complex_t> &v, dimen_t &d, dimen_t &n, number_t m, Vector<real_t> &res)
-
template<typename T, typename R>
inline void evalScalarProduct(const Vector<T> &vec, const Vector<R> &v, dimen_t &d, dimen_t &n, number_t m, Vector<T> &res)
-
template<>
inline void evalVectorMatrixProduct(const Matrix<real_t> &mat, const Vector<complex_t> &v, dimen_t &d, dimen_t &n, number_t m, Vector<real_t> &res)
-
template<typename T, typename R>
inline void evalVectorMatrixProduct(const Matrix<T> &mat, const Vector<R> &v, dimen_t &d, dimen_t &n, number_t m, Vector<T> &res)
-
template<>
inline void evalVectorMatrixProduct(const Vector<real_t> &vec, const Vector<complex_t> &v, dimen_t &d, dimen_t &n, number_t m, Vector<real_t> &res)
-
template<typename T, typename R>
inline void evalVectorMatrixProduct(const Vector<T> &vec, const Vector<R> &v, dimen_t &d, dimen_t &n, number_t m, Vector<T> &res)
-
inline SuTermVector exp(const SuTermVector &s)
-
inline SymbolicFunction &exp(const SymbolicFunction &f)
-
inline TermVector exp(const TermVector &s)
-
GeoNode expand(const GeoNode &gn)
-
create the expansion of a GeoNode (new object)
create the expansion of a GeoNode
-
complex_t expzE1z(const complex_t&)
-
return exp(z)*E1(z)
-
complex_t ext_Fock_s(real_t x, Parameters &pars)
-
complex_t ext_Fock_s_app(real_t x, Parameters &pars)
-
void extendStorage(MatrixEntry *mat, std::vector<DofComponent> &cdofsr, std::vector<DofComponent> &cdofsc, const Constraints *cu, const Constraints *cv, bool keepSymmetry, bool doRow, bool doCol, bool doDiag)
-
extend storage of matrix when constraints are not local and have column/row combination, assuming scalar matrix entries ! mat: pointer to the matrix to be reduced cdofsr: row dof components cdofsc: col dof components cu: pointer to the constraints on the unknown u (col) cv: pointer to the constraints on test function v (row) keepSymmetry: flag to indicate to force symmetry of the extended storage (default not keeping symmetry) doRow, doCol, doDiag: flags to indicates which extensions are processed (default all)
extend matrix storage when constraints are not local and have column/row combination
-
template<typename I1, typename I2>
void extendVector(const std::vector<number_t> &renum, I1 it1, I2 it2)
-
template extension method
-
TermVector extension(const Function &f, const Function &g, const GeomDomain &dom, const Unknown &u)
-
TermVector extension(const Function &f, const Function &g, const GeomDomain &dom, const Unknown &u, const Function &h)
-
TermVector extension(const TermVector &f, const Function &g, const GeomDomain &dom, const Unknown &u)
-
TermVector extension(const TermVector &f, const Function &g, const GeomDomain &dom, const Unknown &u, const Function &h)
-
Value extension(const TermVector &f, const Function &g, const Point &P)
-
Value extension(const TermVector &f, const Function &g, const Point &P, const Function &h)
-
template<typename K>
void extractComponents(const Vector<Vector<K>> &vov, Vector<K> &v, number_t i)
-
extract i-th components (i>0) of a Vector<Vector<K> > and store extract values in Vector<K> (index i>0 is not checked!)
-
inline Geometry extrude(const Geometry &g, const Transformation &t, const char *domName, const char *sidenames)
-
definition of a geometry by extrusion of another geometry, with name and side name
-
inline Geometry extrude(const Geometry &g, const Transformation &t, const char *domName, std::vector<string_t> sidenames = std::vector<string_t>())
-
definition of a geometry by extrusion of another geometry, with name and side names
-
Geometry extrude(const Geometry &g, const Transformation &t, const std::vector<Parameter> &ps)
-
main routine for the definition of a geometry by extrusion of another geometry, with a list if parameters
main external routine for the definition of a geometry by extrusion of another geometry, with a list if parameters
-
inline Geometry extrude(const Geometry &g, const Transformation &t, number_t layers, const char *domName, const char *sidenames)
-
definition of a geometry by extrusion of another geometry, with name and side name
-
inline Geometry extrude(const Geometry &g, const Transformation &t, number_t layers, const char *domName, std::vector<string_t> sidenames = std::vector<string_t>())
-
definition of a geometry by extrusion of another geometry, with name and side names
-
inline Geometry extrude(const Geometry &g, const Transformation &t, number_t layers, std::vector<string_t> sidenames = std::vector<string_t>())
-
definition of a geometry by extrusion of another geometry, with side names
-
inline Geometry extrude(const Geometry &g, const Transformation &t, number_t layers, string_t domName, std::vector<string_t> sidenames = std::vector<string_t>())
-
definition of a geometry by extrusion of another geometry, with name and side names
-
inline Geometry extrude(const Geometry &g, const Transformation &t, number_t layers, string_t domName, string_t sidenames)
-
definition of a geometry by extrusion of another geometry, with name and side name
-
Geometry extrude(const Geometry &g, const Transformation &t, Parameter p)
-
Definition of a geometry by extrusion of another geometry, with 1 Parameter.
-
Geometry extrude(const Geometry &g, const Transformation &t, Parameter p1, Parameter p2)
-
Definition of a geometry by extrusion of another geometry, with 2 Parameter.
-
Geometry extrude(const Geometry &g, const Transformation &t, Parameter p1, Parameter p2, Parameter p3)
-
Definition of a geometry by extrusion of another geometry, with 3 Parameter.
-
Geometry extrude(const Geometry &g, const Transformation &t, Parameter p1, Parameter p2, Parameter p3, Parameter p4)
-
Definition of a geometry by extrusion of another geometry, with 4 Parameter.
-
Geometry extrude(const Geometry &g, const Transformation &t, Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5)
-
Definition of a geometry by extrusion of another geometry, with 5 Parameter.
-
Geometry extrude(const Geometry &g, const Transformation &t, Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5, Parameter p6)
-
Definition of a geometry by extrusion of another geometry, with 6 Parameter.
-
inline Geometry extrude(const Geometry &g, const Transformation &t, std::vector<string_t> sidenames = std::vector<string_t>())
-
definition of a geometry by extrusion of another geometry, with side names
-
inline Geometry extrude(const Geometry &g, const Transformation &t, string_t domName, std::vector<string_t> sidenames = std::vector<string_t>())
-
definition of a geometry by extrusion of another geometry, with name and side names
-
inline Geometry extrude(const Geometry &g, const Transformation &t, string_t domName, string_t sidenames)
-
definition of a geometry by extrusion of another geometry, with name and side name
-
inline Mesh extrude(const Mesh §ionMesh, const std::vector<Transformation*> &trs, const Parameter &p)
-
extrude a mesh using a list of transformations
-
inline Mesh extrude(const Mesh §ionMesh, const std::vector<Transformation*> &trs, const Parameter &p1, const Parameter &p2)
-
inline Mesh extrude(const Mesh §ionMesh, const std::vector<Transformation*> &trs, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
inline Mesh extrude(const Mesh §ionMesh, const std::vector<Transformation*> &trs, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
inline Mesh extrude(const Mesh §ionMesh, const std::vector<Transformation*> &trs, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
Mesh extrude(const Mesh §ionMesh, const std::vector<Transformation*> &trs, const std::vector<Parameter> &ps)
-
external routine to apply an extrusion on a Mesh using a list of transformation
-
inline Mesh extrude(const Mesh §ionMesh, const Transformation &tr, const Parameter &p)
-
extrude a mesh using a transformation
-
inline Mesh extrude(const Mesh §ionMesh, const Transformation &tr, const Parameter &p1, const Parameter &p2)
-
inline Mesh extrude(const Mesh §ionMesh, const Transformation &tr, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
inline Mesh extrude(const Mesh §ionMesh, const Transformation &tr, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
inline Mesh extrude(const Mesh §ionMesh, const Transformation &tr, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
Mesh extrude(const Mesh §ionMesh, const Transformation &tr, const std::vector<Parameter> &ps)
-
external routine to apply an extrusion on a Mesh using an elementary transformation
-
inline Mesh extrude(const Mesh §ionMesh, par_fun f, const Parameter &p)
-
extrude a mesh using a parametrization function
-
inline Mesh extrude(const Mesh §ionMesh, par_fun f, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
inline Mesh extrude(const Mesh §ionMesh, par_fun f, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
inline Mesh extrude(const Mesh §ionMesh, par_fun f, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
Mesh extrude(const Mesh §ionMesh, par_fun f, const std::vector<Parameter> &ps)
-
external routine to apply an extrusion on a Mesh using a parametrisation function
-
template<typename K>
void eyeMatrix(MatrixEigenDense<K> &mat)
-
Reverse all elements of a matrix.
-
template<class ST_>
number_t *faceNumbering()
-
Termination of the construction of a mesh object of 3D elements by transferring data from a subdivision::xxxMesh object into XLiFE++ objects.
-
template<>
number_t *faceNumbering<subdivision::Hexahedron>()
-
template<>
number_t *faceNumbering<subdivision::Tetrahedron>()
-
VectorEntry factLeftSolve(MatrixEntry&, const VectorEntry&)
-
solve transposed linear system after factorization method
-
TermVectors factLeftSolve(TermMatrix &A, const std::vector<TermVector> &Bs)
-
solve left linear system Xs*A=b (~ At*Xs=B) with multiple right hand sides when matrix is already factorized B may be a TermVectors
-
TermVector factLeftSolve(TermMatrix &A, const TermVector &B)
-
solve left linear system X*A=b (~ At*X=B) when matrix is already factorized
-
TermMatrix factLeftSolve(TermMatrix &A, TermMatrix &B)
-
solve left linear system with TermMatrix as right hand side when matrix is already factorized return a TermMatrix in column dense storage
-
void factorize(MatrixEntry &A, FactorizationType ft, bool withPermutation)
-
factorize matrix as LU or LDLt or LDL*, not preserving A
factorize matrix as LU or LDLt or LDL*
-
void factorize(MatrixEntry &A, MatrixEntry &Af, FactorizationType ft, bool withPermutation)
-
factorize matrix as LU or LDLt or LDL* along matrix property if ft=_noFactorisation, type of factorization is searched if matrix is symmetric ldlt factorisation is used if matrix is self-adjoint ldlstar factorisation is used note that factorisation may be failed because there is no pivoting strategy (except for definite symmetric matrix!) if matrix is skew-adjoint ldlstar factorisation may be worked if the diagonal is non zero if matrix is skew-symmetric (diagonal is zero!) ldlt failed in any case ! For the moment LU factorisation is used in case of a skew-adjoint or a skew-symmetric matrix in future, for specific algorithm for skew symmetric or skew adjoint matrices see following papers: Bunch J.R.
factorize matrix as LU or LDLt or LDL*
Stable Algorithms for Solving Symmetric and Skew-Symmetric Systems, Bull. Austral. Math. Soc., vol 26, 107-119, 1982 Lau T., Numerical Solution of Skew-Symmetric Linear Systems, Master Thesis, University of British Columbia, 2007
If umfPack is available, it is used when ft is not specified if withPermution = true, LU with row permutation will be used to deal with dense matrices
-
void factorize(SuTermMatrix&, FactorizationType ft = _noFactorization, bool withPermutation = true)
-
factorize matrix as LU or LDLt or LDL*
-
void factorize(SuTermMatrix&, SuTermMatrix&, FactorizationType ft = _noFactorization, bool withPermutation = true)
-
factorize matrix as LU or LDLt or LDL*
-
void factorize(TermMatrix &A, FactorizationType ft, bool withPermutation)
-
factorize matrix as LU or LDLt or LDL*, not preserving A
-
void factorize(TermMatrix &A, TermMatrix &Af, FactorizationType ft, bool withPermutation)
-
factorize matrix as LU or LDLt or LDL* along matrix property move to global scalar representation in any case
if ft=_noFactorisation, type of factorization is searched if matrix is symmetric ldlt factorisation is used if matrix is self-adjoint ldlstar factorisation is used note that factorisation may be failed because there is no pivoting strategy (except for definite symmetric matrix!) if matrix is skew-adjoint ldlstar factorisation may be worked if the diagonal is non zero if matrix is skew-symmetric (diagonal is zero!) ldlt failed in any case ! For the moment LU factorisation is used in case of a skew-adjoint or a skew-symmetric matrix in future, for specific algorithm for skew symmetric or skew adjoint matrices see following papers: Bunch J.R. Stable Algorithms for Solving Symmetric and Skew-Symmetric Systems, Bull. Austral. Math. Soc., vol 26, 107-119, 1982 Lau T., Numerical Solution of Skew-Symmetric Linear Systems, Master Thesis, University of British Columbia, 2007
If umfPack is available, it is used when ft is not specified if withPermution = true, LU with row permutation will be used to deal with dense matrices
-
VectorEntry factSolve(MatrixEntry&, const VectorEntry&)
-
solve linear system after factorization method
-
SuTermVector factSolve(SuTermMatrix&, const SuTermVector&)
-
solve AX=B when A is factorized
-
SuTermVectors factSolve(SuTermMatrix &A, const std::vector<SuTermVector> &Bs)
-
solve linear system with multiple right hand sides when matrix is already factorized Bs may be a SuTermVectors
solve AXs=Bs when A is factorized
-
SuTermMatrix factSolve(SuTermMatrix &A, SuTermMatrix &B)
-
solve linear system with right hand side matrix when matrix is already factorized in other words create the matrix C = inv(A) * B, C is stored in a dense format Works on scalar representation !
create inv(A)*B when A is factorized
-
TermVectors factSolve(TermMatrix &A, const std::vector<TermVector> &Bs)
-
solve linear system with multiple right hand sides when matrix is already factorized B may be a TermVectors
-
TermVector factSolve(TermMatrix &A, const TermVector &B)
-
TermMatrix factSolve(TermMatrix &A, TermMatrix &B)
-
solve linear system with TermMatrix as right hand side when matrix is already factorized return a TermMatrix in column dense storage
-
std::vector<complex_t> ferrari(real_t a, real_t b, real_t c, real_t d, real_t e)
-
computes roots of degree 4 polynomial (Ferrari method)
-
template<typename T>
std::vector<complex_t> fft(const std::vector<T> &f)
-
template<typename T>
std::vector<complex_t> &fft(const std::vector<T> &f, std::vector<complex_t> &g)
-
template<typename IterA, typename IterB>
void fft(IterA ita, IterB itb, number_t log2n)
-
perform the discrete Fourier transform of the discrete vector a of length n=2^log2n the result is the vector b of length 2^log2n bk = sum_j=0,n-1 aj*exp(-2*i*pi*j*k/n) ita: iterator at the beginning of a itb: iterator at the beginning of b log2n: log_2(n)
-
template<typename IterA, typename IterB>
void ffta(IterA ita, IterB itb, number_t log2n, real_t q)
-
perform the discrete Fourier transform of the discrete vector a of length n=2^log2n the result is the vector b of length 2^log2n bk = sum_j=0,n-1 aj*exp(2*i*q*j*k/n) ita: iterator at the beginning of a itb: iterator at the beginning of b log2n: log_2(n) q: a parameter = -pi for direct fft and = pi for inverse fft
-
string_t fileExtension(const string_t &f)
-
return file name extension using last point as delimiter return root file name and file name extension using last point as delimiter
-
inline string_t fileNameFromComponents(const string_t &rootname, const string_t &extension)
-
string_t fileNameFromComponents(const string_t &rootname, const string_t &suffix, const string_t &extension)
-
build filename from rootname with an additionnal suffix, and extension: rootname_suffix.extension
-
std::pair<string_t, string_t> fileRootExtension(const string_t &f, const std::vector<string_t> &authorizedExtensions)
-
string_t fileWithoutExtension(const string_t &f)
-
return file name without extension using last point as delimiter
-
inline complex_t filon_f(real_t t, Parameters &pa = defaultParameters)
-
function used in Filon: 1/(w2’(r*(t+s))-qw2(r*(t+s))) where s is a shift and r a complex rotation
-
void finalize()
-
finalize execution of XLiFE++
-
Quadrature *findBestQuadrature(ShapeType, number_t, bool = false)
-
“ersatz” of constructor (find or create a new quadrature rule)
-
int_t findBorder(const std::pair<ShapeType, std::vector<const Point*>> &border, const std::vector<std::pair<ShapeType, std::vector<const Point*>>> &borders)
-
find if a curve/surf is in a list of curves/surfs
-
DifferentialOperator *findDifferentialOperator(DiffOpType)
-
contructor-like, returns newly created or existing object
-
GeomRefElement *findGeomRefElement(ShapeType shape)
-
GeomRefElementFind definition of a Geom Reference Element by shape number use existing Geom Reference Element object if one already exists otherwise create a new one, in both cases returns pointer to the object.
definition of a Geom Reference Element by shape type use existing Geom Reference Element if one exists, otherwise create a new one, in both cases returns pointer to the object
-
short int findId(std::vector<CrackData>::const_iterator it_b, std::vector<CrackData>::const_iterator it_e, number_t id)
-
finds a crack data in a list
-
short int findId(std::vector<PhysicalData>::const_iterator it_b, std::vector<PhysicalData>::const_iterator it_e, number_t id)
-
finds a physical data in a list
-
Interpolation *findInterpolation(FEType typ, FESubType sub, number_t num, SobolevType spa)
-
return Interpolation defined by its characteristics use existing Interpolation object if one already exists otherwise create a new one, in both cases returns pointer to the object
main “constructor” by finding first if already exists
-
Interpolation *findInterpolation(InterpolationType interpType, number_t dim)
-
main “constructor” by finding first if already exists
-
const Function *findMap(const GeomDomain&, const GeomDomain&)
-
find map between 2 geomdomains
-
MatrixStorage *findMatrixStorage(const string_t &id, StorageType st, AccessType at)
-
find matrix storage in vector theMatrixStorages of class MatrixStorage
-
MatrixStorage *findMatrixStorage(const string_t &id, StorageType st, AccessType at, StorageBuildType sb, bool scalar, number_t nbr, number_t nbc)
-
Projector &findProjector(Space &V, dimen_t nbcV, Space &W, dimen_t nbcW, ProjectorType pt = _L2Projector)
-
Quadrature *findQuadrature(ShapeType, QuadRule, number_t, bool = false)
-
“ersatz” of constructor (find or create a new quadrature rule)
-
RefElement *findRefElement(ShapeType shape, const Interpolation *interp_p)
-
definition of a Reference Element by shape number and interpolation use existing Reference Element object if one already exists otherwise create a new one, in both cases returns pointer to the object
RefElementFind definition of a Reference Element by shape number and interpolation use existing Reference Element object if one already exists otherwise create a new one, in both cases returns pointer to the object.
-
int_t findString(const string_t, const std::vector<string_t>&)
-
returns position of string in vector<string>
-
short int findString(std::vector<PhysicalData>::const_iterator it_b, std::vector<PhysicalData>::const_iterator it_e, string_t name)
-
finds a physical data in a list
-
complex_t fockCurvatureTransition_D(real_t x)
-
complex_t fockCurvatureTransition_N(real_t x)
-
Point force3D(const Point &p)
-
extends a copy of a point to a 3D point
returns a 3-components copy of a point
-
string_t format(const string_t &s, number_t l, Alignment = _centerAlignment)
-
format string at size s with alignment option
-
template<typename T>
OperatorOnUnknown &fromUnknownVal(const Unknown &un, const T &val, AlgebraicOperator aop)
-
template<typename T>
OperatorOnUnknown &fromValUnknown(const Unknown &un, const T &val, AlgebraicOperator aop)
-
complex_t fun_EC_SC(const Point &P, Parameters &pars)
-
real_t fun_EC_SR(const Point &P, Parameters &pars)
-
Vector<complex_t> fun_EC_VC(const Point &P, Parameters &pars)
-
Vector<real_t> fun_EC_VR(const Point &P, Parameters &pars)
-
inline complex_t fun_productC(const complex_t &x, const complex_t &y)
-
inline real_t fun_productR(const real_t &x, const real_t &y)
-
complex_t gammaFunction(const complex_t&)
-
return \(\int_0^t dt t^{x-1} \exp(-t)\) for x > 0
-
real_t gammaFunction(int_t n)
-
Function \(Gamma(z) = \int_0^{\infty} t^{z-1} exp(-t) dt for Re(z) > 0\).
Gamma(1-z) = Pi / ( sin(Pi z) Gamma(z) )
Gamma(z+1) = z Gamma(z)
Gamma(n+1) = n! for integer n > 0 return Gamma(n) = (n-1)!
-
real_t gammaFunction(real_t)
-
return \(\int_0^t dt t^{x-1} \exp(-t)\) for x > 0
-
void gammaTest(std::ostream &out)
-
void gaussJacobi20Output(number_t nmax, std::ostream &out)
-
Output of Gauss-Jacobi (2,0) rule as displayed in function GaussJacobi20Rule.
“tabulated output” of Gauss-Jacobi (2,0) rules up to a given number of points
-
void gaussJacobi20Rule(number_t n, std::vector<real_t> &points, std::vector<real_t> &weights)
-
Compute Gauss-Jacobi n-point formula on [-1, 1].
returns Gauss-Jacobi (2,0) rule with tabulated
Points xj are roots of Jacobi Polynomial Pn(2,0) of ordre n (namely orthogonal polynomials of weight (1-x)^2
Weights are - (2n+4)*Gamma(n+3)*Gamma(n+1)*4/((n+3)*Gamma(n+3)*(n+1)!*Pn(2,0)’(xi)*P(n+1)(2,0)(xi))
Note: the (n+1)/2 first positive points in ascending order only are returned.
-
void gaussJacobiOutput(number_t nmax, real_t a, real_t b, std::ostream &out)
-
Output of Gauss-Jacobi rule as displayed in function GaussJacobi20Rule.
“tabulated output” of Gauss-Jacobi rules up to a given number of points
-
void gaussJacobiRule(number_t n, real_t a, real_t b, std::vector<real_t> &points, std::vector<real_t> &weights)
-
Compute Gauss-Jacobi n-point formula on [-1, 1].
returns Gauss-Jacobi rule with tabulated
Points xj are roots of Jacobi Polynomial Pn(a,b) of ordre n (namely orthogonal polynomials of weight (1-x)^a*(1+x)^b)
Weights are - (2n+a+b+2)*Gamma(n+a+1)*Gamma(n+b+1)*2^(a+b)/((n+a+b+1)*Gamma(n+a+b+1)*(n+1)!*Pn(a,b)’(xi)*P(n+1)(a,b)(xi))
Note: the (n+1)/2 first positive points in ascending order only are returned.
-
void gaussLegendreOutput(number_t nmax, std::ostream &out)
-
Output of Gauss-Legendre rule as displayed in function GaussLegendreRule.
“tabulated output” of Gauss-Lobatto rules up to a given number of points
-
void gaussLegendreRule(number_t n, std::vector<real_t> &points, std::vector<real_t> &weights)
-
returns quadrature points and weights for Gauss-Legendre formula for a given number of points n ; n-point Gauss-Legendre formula is exact for polynomials of degree up to {2n-1} on [-1,1].
returns Gauss-Legendre rule with computed or tabulated
Points and weights are given below for n up to 16
Note: the (n+1)/2 positive points in ascending order only are returned.
-
void gaussLegendreRuleComputed(number_t n, std::vector<real_t> &points, std::vector<real_t> &weights)
-
Compute Gauss-Legendre n-point formula on [-1, 1].
returns Gauss-Legendre rule for any number of points
Points xj are roots of Legendre Polynomial pn of ordre n
Weights are 2/( (1-xj^2) (P’_n(xj)^2) )
Note: the (n+1)/2 first positive points in ascending order only are returned.
-
void gaussLobattoOutput(number_t nmax, std::ostream &out)
-
Output of Gauss-Lobatto rule as displayed in function GaussLobattoRule.
“tabulated output” of Gauss-Lobatto rules up to a given number of points
-
void gaussLobattoPoints(number_t n, std::vector<real_t> &points)
-
returns quadrature nodes for Gauss-Lobatto rule for a given number of points.
returns Gauss-Lobatto points for any number of points
Note: the (n+1)/2 points non-negative points in ascending order are returned only with possible point 0 included and including end point 1
-
void gaussLobattoRule(number_t n, std::vector<real_t> &points, std::vector<real_t> &weights)
-
returns quadrature points & weights for Gauss-Lobatto rule for a given number of points.
returns Gauss-Lobatto rule with computed or tabulated
n-point Gauss-Lobatto formula is exact for P_{2n-3}(0,1)
Note: only points and weights corresponding to the (n+1)/2 points non-negative points, with possible point 0 included and including end point 1, are returned
The following programs shows table of values (with 20 significant digits) up to n=16 which have been computed by function GaussLobattoRuleComputed using type long double.
-
void gaussLobattoRuleComputed(number_t n, std::vector<real_t> &points, std::vector<real_t> &weights)
-
compute Gauss-Lobatto n-point formula on [-1, 1] end points included
returns Gauss-Lobatto rule for any number of points
Points xj are roots of (1-x^2)*P’_{n-1} with P’_{n-1} derivative of Legendre Polynomial of ordre n-1
Weights are 2./(n*(n-1)) for end points -1 and +1 2./(n*(n-1)*{P_{n-1}(xj)}^2) for other xj
Note: the (n-1)/2 first positive points in ascending order only are returned that is excluding end point 1 and corresponding weight.
-
template<typename K_>
bool gaussMultipleSolver(std::vector<K_> &mat, std::vector<K_> &rhs, number_t nbrhs, real_t &minPivot, number_t &row)
-
Template multiple Gaussian elimination solver with partial pivoting strategy for a square linear system with dense row major access matrix the number of right hand sides is given by nbrhs Note: when giving Id matrix as rhs, it returns the inverse of mat in rhs.
-
template<typename T>
void gaussSolve(LargeMatrix<T> &mat, std::vector<std::vector<T>> &rhss)
-
template<typename T>
void gaussSolve(LargeMatrix<T> &mat, std::vector<T> &rhs)
-
void gaussSolve(MatrixEntry&, VectorEntry&, VectorEntry&)
-
Gauss solver (only in scalar representation)
-
SuTermVector gaussSolve(SuTermMatrix&, const SuTermVector&, bool keepA = false)
-
solve AX=B using Gauss reduction solve AX=B using umfpack if available
-
TermVectors gaussSolve(TermMatrix &A, const std::vector<TermVector> &Bs, bool keepA)
-
TermVector gaussSolve(TermMatrix &A, const TermVector &B, bool keepA)
-
template<typename K_>
bool gaussSolver(std::vector<K_> &mat, std::vector<K_> &rhs, real_t &minPivot, number_t &row)
-
Template Gaussian elimination solver with partial pivoting strategy for a square linear system with dense row major access matrix.
-
void gegenbauerPolynomials(real_t lambda, real_t, std::vector<real_t>&)
-
Gegenbauer ultraspherical polynomials on [-1, 1], with parameter lambda up to order n P_0 = 1, P_1 = 2*lambda*x n*P_n(x) = 2*(n+lambda-1)*x*P_{n-1}(x) - (n+2*lambda-2)*P_{n-2}(x) , n > 1.
-
string_t genDomName(number_t ndom)
-
inline const GeomElement *geomElementFromParameters(Parameters &pars)
-
const GeomDomain *geomUnionOf(std::vector<const GeomDomain*> &doms, const GeomDomain *largeDom)
-
construct or identify the geometrical union of domains.
construct or identify the geometrical symbolic union of domains
Geometrical union is a real union which performs element or side element inclusion in other elements or side elements it uses the element id number to test inclusion of a list of elements in an other list of elements for side element it uses the parent element id number. !!! Side of side element is not handled for the moment
largeDom is a large domain containing all domains given in doms
GeomDomains may be a meshDomain or a compositeDomain of union type (domains intersection are not managed) when a domain contains all others, the function returns it when the union gives an existing domain, the function returns it else the function return a new compositeDomain (union)
Note
do not confuse geometrical union with union of domains which is a semantic union (no geometrical analysis is performed) Geometrical union is an internal tool, end users do not have to use it
-
ValueType get_value_type(const string_t&)
-
get the type of the parameter value by name
-
inline Vector<real_t> &getB()
-
inline number_t getBasisIndex()
-
inline Vector<real_t> &getBx()
-
inline Vector<real_t> &getBy()
-
Strings getComponentBordersToGeo(const Geometry &g)
-
returns the borders numbers of a canonical geometry in a geo file
writing the borders numbers of a canonicl geometry in a geo file
-
inline number_t getDerivative()
-
inline Dof &getDof()
-
inline GeomDomain &getDomain()
-
inline GeomDomain &getDomainx()
-
inline GeomDomain &getDomainy()
-
inline GeomElement &getElement()
-
inline GeomElement &getElement(number_t t)
-
inline GeomElement *getElementP()
-
inline GeomElement *getElementP(number_t t)
-
inline FeDof &getFeDof()
-
template<class T>
inline DefaultSPStorage<T>::PointerType getImpl(const DefaultSPStorage<T> &sp)
-
template<class T>
inline const DefaultSPStorage<T>::StoredType &getImplConstRef(DefaultSPStorage<T> &sp)
-
template<class T>
inline const DefaultSPStorage<T>::StoredType &getImplRef(const DefaultSPStorage<T> &sp)
-
template<class T>
inline DefaultSPStorage<T>::StoredType &getImplRef(DefaultSPStorage<T> &sp)
-
inline Vector<real_t> &getN()
-
inline const Vector<real_t> &getNormalVectorFrom(const Parameters &pa)
-
inline Vector<real_t> &getNx()
-
inline const Vector<real_t> &getNxVectorFrom(const Parameters &pa)
-
inline Vector<real_t> &getNy()
-
inline const Vector<real_t> &getNyVectorFrom(const Parameters &pa)
-
template<typename T>
inline const RefCounted<T>::CountType &getRefCounted(const RefCounted<T> &ref)
-
template<typename T>
inline RefCounted<T>::CountType &getRefCounted(RefCounted<T> &ref)
-
template<typename T>
bool getRefCountedAlloc(RefCounted<T> &ref)
-
RefElement *getRefElt(number_t elmType, const GMSHMAP &gmMap, number_t *nb_pts, number_t *elmDim, bool *isSimplex)
-
inline Vector<real_t> &getT()
-
inline Vector<real_t> &getTx()
-
inline Vector<real_t> &getTy()
-
inline Vector<real_t> &getVector(UnitaryVector un)
-
template<typename K>
std::vector<PolynomialT<K>> grad(const MonomialT<K> &m, dimen_t d = 3)
-
template<typename K>
PolynomialsBasisT<K> grad(const PolynomialBasisT<K> &ps)
-
template<typename K>
std::vector<PolynomialT<K>> grad(const PolynomialT<K> &p, dimen_t d = 3)
-
OperatorOnUnknown &grad(const Unknown &un)
-
OperatorOnKernel &grad_x(const Kernel&)
-
grad_x(k)
-
OperatorOnKernel &grad_x(OperatorOnKernel&)
-
grad_x(opk)
-
OperatorOnKernel &grad_y(const Kernel&)
-
grad_y(k)
-
OperatorOnKernel &grad_y(OperatorOnKernel&)
-
grad_y(opk)
-
OperatorOnUnknown &gradG(const Unknown &un, const complex_t &ax, const complex_t &ay, const complex_t &az, const complex_t &at)
-
OperatorOnUnknown &gradS(const Unknown &un)
-
void gradxgradyover4pir(const Point&, const Point&, Vector<Vector<real_t>>&)
-
\(grad_xgrad_y/(4\pi r)\)
-
inline complex_t hankelH1(const complex_t &z, real_t N)
-
Hankel function of the first kind and order N: H1_N(z) = J_N(z) + i Y_N(z) (complex case)
-
template<>
inline complex_t hankelH1(real_t x, real_t N)
-
Hankel function of the first kind and real order N: H1_N(x) = J_N(x) + i Y_N(x)
-
template<class T_>
complex_t hankelH1(real_t x, T_ N)
-
inline complex_t hankelH10(const complex_t &z)
-
Hankel function of the first kind and order 0 : H1_0(z) = J_0(z) + i Y_0(z) (complex case)
-
complex_t hankelH10(real_t x)
-
Hankel function of the first kind and order 0 : H1_0(x) = J_0(x) + i Y_0(x)
-
std::vector<complex_t> hankelH10N(real_t x, number_t N)
-
Hankel functions of the first kind and order 0 … N: H1_k(x) = J_k(x) + i Y_k(x)
-
inline complex_t hankelH11(const complex_t &z)
-
Hankel function of the first kind and order 1 : H1_1(z) = J_1(z) + i Y_1(z) (complex case)
-
complex_t hankelH11(real_t x)
-
Hankel function of the first kind and order 1 : H1_1(x) = J_1(x) + i Y_1(x)
-
inline complex_t hankelH2(const complex_t &z, real_t N)
-
Hankel function of the second kind and order N: H2_N(z) = J_N(z) - i Y_N(z) (complex case)
-
template<>
inline complex_t hankelH2(real_t x, real_t N)
-
Hankel function of the second kind and real order N: H2_N(x) = J_N(x) - i Y_N(x)
-
template<class T_>
complex_t hankelH2(real_t x, T_ N)
-
inline complex_t hankelH20(const complex_t &z)
-
Hankel function of the second kind and order 0 : H2_0(z) = J_0(z) + i Y_0(z) (complex case)
-
inline complex_t hankelH20(real_t x)
-
Hankel function of the second kind and order 0 : H2_0(x) = J_0(x) - i Y_0(x)
-
std::vector<complex_t> hankelH20N(real_t x, number_t N)
-
Hankel functions of the second kind and order 0 … N: H2_k(x) = J_k(x) - i Y_k(x)
-
inline complex_t hankelH21(const complex_t &z)
-
Hankel function of the second kind and order 1 : H2_1(z) = J_1(z) - i Y_1(z) (complex case)
-
inline complex_t hankelH21(real_t x)
-
Hankel function of the second kind and order 1 : H2_1(x) = J_1(x) - i Y_1(x)
-
bool hasAnalyticGeodesic(const Geometry &geo)
-
template<typename T>
bool hasCommonElts(const ClusterNode<T> &cn1, const ClusterNode<T> &cn2)
-
bool hasGeometricGeodesic(const Geometry &geo)
-
complex_t Helmholtz2d(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
value
-
Vector<complex_t> Helmholtz2dGradx(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
gradx
-
Vector<complex_t> Helmholtz2dGradxReg(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
reg gradx
-
Vector<complex_t> Helmholtz2dGradxSing(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
sing gradx
-
Matrix<complex_t> Helmholtz2dGradxy(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
gradxy
-
Matrix<complex_t> Helmholtz2dGradxyReg(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
reg gradxy
-
Matrix<complex_t> Helmholtz2dGradxySing(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
sing gradxy
-
Vector<complex_t> Helmholtz2dGrady(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
grady
-
Vector<complex_t> Helmholtz2dGradyReg(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
reg grady
-
Vector<complex_t> Helmholtz2dGradySing(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
sing grady
-
complex_t Helmholtz2dHalfPlane(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
Helmholtz kernel in a half-plane with either Dirichlet or Neumann boundary condition half plane P is defined by AY.n >0 where A(a1,a2) is a point of a line L, t = (t1,t2) the tangent vector and n=(-t2,t1) kernel is built from source image Ys = 2A - Y +2*(AY.t)t/|t|^2.
Hd(X,Y) = H(X,Y) - H(X,Ys) satisfy Hd(X,Y) =0 for Y in L (say Dirichlet condition) Hd(X,Y) = H(X,Y) + H(X,Ys) satisfy grad(Hd(X,Y)).n =0 for Y in L (say Neumann condition)
This kernel manage the following parameters bc: boundary condition type on line L (_Dirichlet (default),_Neumann) k: wave number a,b: origin of the line (default (0,0)) t1,t2 : tangent vector of the line (default (1,0))
-
Vector<complex_t> Helmholtz2dHalfPlaneGradx(const Point &x, const Point &y, Parameters &pa)
-
Matrix<complex_t> Helmholtz2dHalfPlaneGradxy(const Point &x, const Point &y, Parameters &pa)
-
Vector<complex_t> Helmholtz2dHalfPlaneGrady(const Point &x, const Point &y, Parameters &pa)
-
Kernel Helmholtz2dHalfPlaneKernel(Parameters& = defaultParameters)
-
construct a Helmholtz2dHalfPlane kernel
-
Kernel Helmholtz2dHalfPlaneKernel(real_t k, const std::vector<real_t> &t = Point(1., 0.), const Point &A = Point(0., 0.), BoundaryCondionType bct = _Dirichlet)
-
construct a Helmholtz2dHalfPlane kernel from k, point, vector, bc
-
Kernel Helmholtz2dHalfPlaneKernel(real_t k, real_t t1 = 1., real_t t2 = 0., real_t a = 0., real_t b = 0., BoundaryCondionType bct = _Dirichlet)
-
construct a Helmholtz2dHalfPlane kernel from from k, point, vector, bc
-
complex_t Helmholtz2dHalfPlaneNxdotGradx(const Point &x, const Point &y, Parameters &pa)
-
complex_t Helmholtz2dHalfPlaneNydotGrady(const Point &x, const Point &y, Parameters &pa)
-
Kernel Helmholtz2dKernel(const real_t &k)
-
construct a Helmholtz2d kernel from real k
-
Kernel Helmholtz2dKernel(Parameters& = defaultParameters)
-
construct a Helmholtz2d kernel
-
Kernel Helmholtz2dKernelReg(Parameters& = defaultParameters)
-
construct a Helmholtz2d kernel, regular part
-
Kernel Helmholtz2dKernelSing(Parameters& = defaultParameters)
-
construct a Helmholtz2d kernel, singular part
-
complex_t Helmholtz2dNxdotGradx(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
nx.gradx
-
complex_t Helmholtz2dNydotGrady(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
ny.grady
-
complex_t Helmholtz2dReg(const Point &x, const Point &y, Parameters &pa)
-
Regular part of Helmholtz2d function i/4 H^{(1)}_0(k*r) - log(k*r)/(2*pi)
reg value
-
complex_t Helmholtz2dSing(const Point &x, const Point &y, Parameters &pa)
-
Singular part of Helmholtz2d function - log(r)/(2*pi)
sing value
-
complex_t Helmholtz2dStrip(const Point &x, const Point &y, Parameters &pa)
-
complex_t Helmholtz2dStripDir(const Point &x, const Point &y, real_t k, real_t h, real_t l, number_t N, real_t eps)
-
Vector<complex_t> Helmholtz2dStripGradx(const Point &x, const Point &y, Parameters &pa)
-
Vector<complex_t> Helmholtz2dStripGradxDir(const Point &x, const Point &y, real_t k, real_t h, real_t l, number_t N, real_t eps)
-
Vector<complex_t> Helmholtz2dStripGradxNeu(const Point &x, const Point &y, real_t k, real_t h, real_t l, number_t N, real_t eps)
-
Matrix<complex_t> Helmholtz2dStripGradxy(const Point &x, const Point &y, Parameters &pa)
-
Matrix<complex_t> Helmholtz2dStripGradxyDir(const Point &x, const Point &y, real_t k, real_t h, real_t l, number_t N, real_t eps)
-
Matrix<complex_t> Helmholtz2dStripGradxyNeu(const Point &x, const Point &y, real_t k, real_t h, real_t l, number_t N, real_t eps)
-
Vector<complex_t> Helmholtz2dStripGrady(const Point &x, const Point &y, Parameters &pa)
-
Vector<complex_t> Helmholtz2dStripGradyDir(const Point &x, const Point &y, real_t k, real_t h, real_t l, number_t N, real_t eps)
-
Vector<complex_t> Helmholtz2dStripGradyNeu(const Point &x, const Point &y, real_t k, real_t h, real_t l, number_t N, real_t eps)
-
Kernel Helmholtz2dStripKernel(BoundaryCondionType bct, real_t k, real_t h = 1., number_t n = 1000, real_t l = -1., real_t e = 1.E-6)
-
construct a Helmholtz2dStrip kernel from k, h, n, …
-
Kernel Helmholtz2dStripKernel(Parameters& = defaultParameters)
-
construct a Helmholtz2d kernel
-
complex_t Helmholtz2dStripNeu(const Point &x, const Point &y, real_t k, real_t h, real_t l, number_t N, real_t eps)
-
complex_t Helmholtz2dStripNxdotGradx(const Point &x, const Point &y, Parameters &pa)
-
complex_t Helmholtz2dStripNydotGrady(const Point &x, const Point &y, Parameters &pa)
-
complex_t Helmholtz3d(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
value
-
Vector<complex_t> Helmholtz3dGradx(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
gradx
-
Vector<complex_t> Helmholtz3dGradxReg(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
gradx
-
Vector<complex_t> Helmholtz3dGradxSing(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
gradx
-
Matrix<complex_t> Helmholtz3dGradxy(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
gradxy
-
Matrix<complex_t> Helmholtz3dGradxyReg(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
gradxy
-
Matrix<complex_t> Helmholtz3dGradxySing(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
gradxy
-
Vector<complex_t> Helmholtz3dGrady(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
grady
-
Vector<complex_t> Helmholtz3dGradyReg(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
grady
-
Vector<complex_t> Helmholtz3dGradySing(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
grady
-
Kernel Helmholtz3dKernel(const complex_t &k)
-
construct a Helmholtz3d kernel from complex k
-
Kernel Helmholtz3dKernel(const real_t &k)
-
construct a Helmholtz3d kernel from real k
-
Kernel Helmholtz3dKernel(Parameters& = defaultParameters)
-
construct a Helmholtz3d kernel from parameters
-
Kernel Helmholtz3dKernelReg(Parameters& = defaultParameters)
-
construct a Helmholtz3d kernel from parameters
-
Kernel Helmholtz3dKernelSing(Parameters& = defaultParameters)
-
construct a Helmholtz3d kernel from parameters
-
complex_t Helmholtz3dNxdotGradx(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
nx.gradx
-
complex_t Helmholtz3dNydotGrady(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
ny.grady
-
complex_t Helmholtz3dNydotGradyReg(const Point &x, const Point &y, Parameters &pa)
-
complex_t Helmholtz3dReg(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
value
-
complex_t Helmholtz3dSing(const Point &x, const Point &y, Parameters &pa = defaultParameters)
-
value
-
template<typename T1_iterator, typename T2_iterator>
complex_t hermitianInnerProductTpl(T1_iterator b1, T1_iterator e1, T2_iterator b2)
-
hermitian product
-
template<typename T, typename K>
T hermitianProduct(const std::vector<std::pair<number_t, T>> &u, const std::map<number_t, K> &v)
-
complex_t hermitianProduct(const SuTermVector&, const SuTermVector&)
-
hermitian product
-
complex_t hermitianProduct(const TermVector &tv1, const TermVector &tv2)
-
hermitian product
-
template<typename K1, typename K2>
complex_t hermitianProduct(const Vector<K1> &vecFirst, const Vector<K2> &vecSecond)
-
complex_t hermitianProduct(const VectorEntry&, const VectorEntry&)
-
hermitian product of two vectorentry’s
-
Quadrature *hexahedronQuadrature(QuadRule, number_t)
-
find or create quadrature rule over the unit hexahedron
-
template<class Geom>
Geom homothetize(const Geom &g, const Parameter &p1)
-
apply a homothety on a Geom (1 key) (template external)
-
template<class Geom>
Geom homothetize(const Geom &g, const Parameter &p1, const Parameter &p2)
-
apply a homothety on a Geom (2 keys) (template external)
-
template<class Geom>
Geom homothetize(const Geom &g, const Point &c = Point(0., 0., 0.), real_t factor = 0.)
-
apply a homothety on a Geom (template external)
-
template<class Geom>
Geom homothetize(const Geom &g, real_t factor)
-
apply a homothety on a Geom (template external)
-
inline Geometry homothetize(const Geometry &g, const Parameter &p1)
-
apply a homothety on a Geometry (1 key) (template external)
-
inline Geometry homothetize(const Geometry &g, const Parameter &p1, const Parameter &p2)
-
apply a homothety on a Geometry (2 keys) (template external)
-
inline Geometry homothetize(const Geometry &g, const Point &c = Point(0., 0., 0.), real_t factor = 0.)
-
apply a homothety on a Geometry (template external)
-
inline Geometry homothetize(const Geometry &g, real_t factor)
-
apply a homothety on a Geometry (template external)
-
Mesh homothetize(const Mesh &m, const Parameter &p1)
-
apply a homothety on a Mesh (1 key)
apply a homothety on a Mesh (1 key) (external)
-
Mesh homothetize(const Mesh &m, const Parameter &p1, const Parameter &p2)
-
apply a homothety on a Mesh (2 keys)
apply a homothety on a Mesh (2 keys) (external)
-
Mesh homothetize(const Mesh &m, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
apply a homothety on a Mesh (3 keys)
apply a homothety on a Mesh (3 keys) (external)
-
Mesh homothetize(const Mesh &m, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
apply a homothety on a Mesh (4 keys)
apply a homothety on a Mesh (4 keys) (external)
-
Mesh homothetize(const Mesh &m, const Point &c, real_t factor = 1.)
-
apply a homothety on a Mesh (external)
-
inline Point homothetize(const Point &g, const Parameter &p1)
-
apply a homothety on a Point (1 key) (template external)
-
inline Point homothetize(const Point &g, const Parameter &p1, const Parameter &p2)
-
apply a homothety on a Point (2 keys) (template external)
-
inline Point homothetize(const Point &g, const Point &c = Point(0., 0., 0.), real_t factor = 0.)
-
apply a homothety on a Point (template external)
-
inline Point homothetize(const Point &g, real_t factor)
-
apply a homothety on a Point (template external)
-
template<typename scalar1, typename T1_iterator, typename scalar2>
scalar2 hornerAlgorithmTpl(scalar1 x, T1_iterator b, T1_iterator e, scalar2 p0)
-
if p0 == 0 this is Horner algorithm: a[n] + x * (a[n-1] + x * (a[n-2] +…+ x * (a[0])…)) else compute a[n] + x * (a[n-1] + x * (a[n-2] +…+ x * (a[0] + x * p0)…))
-
OperatorOnFunction &id(const Function&)
-
id(k)
-
OperatorOnKernel &id(const Kernel&)
-
id(k)
-
OperatorOnUnknown &id(const Unknown&)
-
“differential” operators applied to unknown
-
OperatorOnFunction &id(OperatorOnFunction&)
-
id(opf)
-
OperatorOnKernel &id(OperatorOnKernel&)
-
id(opk)
-
template<typename T>
LargeMatrix<T> identityMatrix(const LargeMatrix<T> &mat)
-
void iFactorize(MatrixEntry&, MatrixEntry&, FactorizationType ft = _noFactorization)
-
factorize matrix as iLU (later or iLDLt or iLDL*)
-
void iFactorize(MatrixEntry &A, FactorizationType ift)
-
incomplete factorize matrix as ILU (or iLDLt or iLDL*), not preserving A
factorize matrix as iLU (later or iLDLt or iLDL*)
-
void iFactorize(TermMatrix &A, FactorizationType ft)
-
void iFactorize(TermMatrix &A, TermMatrix &Af, FactorizationType ft)
-
template<typename T>
std::vector<complex_t> ifft(const std::vector<T> &f)
-
template<typename T>
std::vector<complex_t> &ifft(const std::vector<T> &f, std::vector<complex_t> &g)
-
template<typename IterA, typename IterB>
void ifft(IterA ita, IterB itb, number_t log2n)
-
perform the inverse discrete Fourier transform of the discrete vector a of length n=2^log2n the result is the vector b of length 2^log2n bk = (1/n) sum_j=0,n-1 aj*exp(2*i*pi*j*k/n) ita: iterator at the beginning of a itb: iterator at the beginning of b log2n: log_2(n)
-
template<typename S>
void ildlstarFactorize(LargeMatrix<S> &mat)
-
template<typename S>
void ildltFactorize(LargeMatrix<S> &mat)
-
void ildltFactorize(TermMatrix &A, TermMatrix &Af)
-
template<typename S>
void illstarFactorize(LargeMatrix<S> &mat)
-
template<typename S>
void illtFactorize(LargeMatrix<S> &mat)
-
void illtluFactorize(TermMatrix &A, TermMatrix &Af)
-
template<typename S>
void iluFactorize(LargeMatrix<S> &mat)
-
void iluFactorize(TermMatrix &A, TermMatrix &Af)
-
inline SymbolicFunction &imag(const SymbolicFunction &f)
-
TermMatrix imag(const TermMatrix &tm)
-
return imag part as a real TermMatrix
-
TermVector imag(const TermVector &tv)
-
extracts imag part
-
Vector<real_t> imag(const Vector<real_t> &a)
-
real part of a complex vector
imaginary part of a real vector
-
Vector<Vector<real_t>> imag(const Vector<Vector<complex_t>> &a)
-
abs of a vector of complex vectors
imaginary part of a vector of complex vectors
-
Vector<Vector<real_t>> imag(const Vector<Vector<real_t>> &a)
-
abs of a vector of real vectors
imaginary part of a vector of real vectors
-
inline real_t imagPart(const complex_t&)
-
Matrix<real_t> imagPart(const Matrix<complex_t> &cB)
-
imaginary part of a complex matrix
imag part of a complex matrix
-
inline real_t imagPart(const real_t&)
-
inline SuTermVector imagPart(const SuTermVector &s)
-
template<typename T1_iterator, typename R_iterator>
void imagTpl(T1_iterator b1, T1_iterator e1, R_iterator Rb)
-
returns imaginary part of vector entries: R[i] = imag(T1[i])
-
void incompleteFunction(const string_t &s = "")
-
message sent when function not fully defined
-
template<typename T>
void info(const string_t &msgIds, const T &v, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7>
void info(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
void info(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2, typename T3, typename T4, typename T5>
void info(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2, typename T3, typename T4>
void info(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2, typename T3>
void info(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2>
void info(const string_t &msgIds, const T1 &v1, const T2 &v2, Messages *msgSrc = theMessages_p)
-
void info(const string_t &msgIds, MsgData &msgData, Messages *msgSrc)
-
shortcut of msg for info type messages
throw info messages
-
void init()
-
initializes execution of XLiFE++
-
void init(const Parameter &p1)
-
void init(const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
void init(const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6)
-
void init(const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7)
-
void init(const std::vector<Parameter> &ps, int argc, char **argv)
-
void init(int argc, char **argv)
-
void init(int argc, char **argv, const Parameter &p1)
-
void init(int argc, char **argv, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
void init(int argc, char **argv, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
void init(int argc, char **argv, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6)
-
void init(int argc, char **argv, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7)
-
void initBuild(Language lang, number_t verboseLevel, int_t nbThreads, bool trackingMode, bool pushpop, bool traceMemory, bool isLogged, const std::vector<string_t> &syskeys, const std::vector<string_t> &authorizedExtensions)
-
initialize execution of XLiFE++
-
void initCylinderSidePartGeodesic(Parameters ¶ms)
-
void initGmshMap(GMSHMAP &gmMap)
-
void initHelmholtz2dHalfPlaneKernel(Kernel&, Parameters&)
-
initialize kernel data
-
void initHelmholtz2dKernel(Kernel&, Parameters&)
-
initialize kernel data
-
void initHelmholtz2dStripKernel(Kernel&, Parameters&)
-
initialize kernel data
-
void initHelmholtz3dKernel(Kernel&, Parameters&)
-
initialize kernel data
-
void initMaxwell3dKernel(Kernel&, Parameters&)
-
initialize kernel data
-
void initRandomGenerators(int)
-
initialize random generators from a seed
-
complex_t innerProduct(const SuTermVector&, const SuTermVector&)
-
inner product
-
complex_t innerProduct(const TermVector &tv1, const TermVector &tv2)
-
inner product
-
complex_t innerProduct(const VectorEntry&, const VectorEntry&)
-
inner product of two vectorentry’s
-
template<typename K>
PolynomialT<K> integral(VariableName vn, const MonomialT<K> &m)
-
template<typename K>
PolynomialT<K> integral(VariableName vn, const PolynomialT<K> &p)
-
template<typename K>
std::vector<PolynomialT<K>> integral(VariableName vn, const std::vector<PolynomialT<K>> &ps)
-
TermMatrix integralRepresentation(const GeomDomain&, const LinearForm&, string_t nam = "IR")
-
integral representation, no unknown
-
template<typename T>
Vector<T> &integralRepresentation(const GeomDomain &dom, const LinearForm &lf, const TermVector &U, Vector<T> &val, std::vector<Point> &xs)
-
points are given from a GeomDomain, return values and points in input arguments list (pts)
-
template<typename T>
Vector<T> &integralRepresentation(const GeomDomain &dom, const std::pair<LinearForm, const TermVector*> lftv, Vector<T> &val, std::vector<Point> &pts)
-
TermMatrix integralRepresentation(const std::vector<Point>&, const LinearForm&, string_t nam = "IR")
-
integral representation, no unknown, no domain
-
template<typename T>
Vector<T> &integralRepresentation(const std::vector<Point> &xs, const LinearForm &lf, const TermVector &U, Vector<T> &val, const std::vector<Vector<real_t>> &ns = std::vector<Vector<real_t>>())
-
compute integral representation on a set of points: intg_gamma op(K)(xi,y) aop op(u) dy op(K) : operator on a Kernel K op(u) : operator on a TermVector u (defined on gamma) aop: algebraic operator
syntax examples: Vector<real_t> val; integralRepresentation(Points, intg(gamma,G * u), U, val); //U values of unknown integralRepresentation(Points, intg(gamma,(grad_y(G)|_ny) * u, U, GaussLegendre,3), val); integralRepresentation(Points, intg(gamma,(grad_x(G)|_nx) * u, U, GaussLegendre,3), val);
be cautious, returned values may be of type Vector<real_t>, Vector<complex_t> and has to be consistent with computation
-
template<typename T>
Vector<Vector<T>> &integralRepresentation(const std::vector<Point> &xs, const LinearForm &lf, const TermVector &U, Vector<Vector<T>> &val, const std::vector<Vector<real_t>> &ns = std::vector<Vector<real_t>>())
-
compute integral representation on a set of points returning a vector of vector
-
template<typename T>
Vector<T> &integralRepresentation(const std::vector<Point> &xs, const std::pair<LinearForm, const TermVector*> lftv, Vector<T> &val, const std::vector<Vector<real_t>> &ns = std::vector<Vector<real_t>>())
-
TermVector integralRepresentation(const Unknown&, const GeomDomain&, const LinearForm&, const TermVector&, const string_t &nam = "IR")
-
integralRepresentation, points are given from a GeomDomain, return a TermVector related to unknown u
-
TermMatrix integralRepresentation(const Unknown&, const GeomDomain&, const LinearForm&, string_t nam = "IR")
-
integral representation
-
inline TermVector integralRepresentation(const Unknown &u, const GeomDomain &dom, std::pair<LinearForm, const TermVector*> lftv, const string_t &nam = "IR")
-
void integrandLapDLP1lin(const Point &Sm, const Point &Sp, real_t h, real_t d, const Point &Ip, Vector<real_t> &res)
-
real_t integrandLapSLP0(const Point &Sm, const Point &Sp, real_t h, real_t d, const Point &Ip, real_t alpha = 1.)
-
Explicit primitives
-
real_t integrandLapSLP1const(const Point &Sm, const Point &Sp, real_t h, real_t d, const Point &Ip, real_t alpha = 1.)
-
void integrandLapSLP1lin(const Point &Sm, const Point &Sp, real_t h, real_t d, const Point &Ip, Vector<real_t> &res, real_t alpha = 1.)
-
GeomDomain &internalSides(GeomDomain &dom)
-
access to domain defined from all internal sides of elements of domain dom, create it if not defined
-
TermVector interpolate(const Unknown&, const GeomDomain&, const TermVector&, const string_t &na = "")
-
interpolation of a TermVector on a domain, specifying unknown
-
void interpolatedNormals(Space &sp, std::vector<Vector<real_t>> &ns)
-
compute interpolated normals on Lagrange Dofs of space sp solve the projection problem Mk*nk = M0*n0 where Mk is the mass matrix associated to sp interpolation M0 is the “hybrid” mass matrix between sp interpolation and P0 interpolation the normals are returned as a vector of Vector
compute interpolated normals on Lagrange Dofs of space sp
NOTE: this method is well adapted for planar element (same normal every where in element) in case of curved geometric element, the method may be improved by using Gauss Lobatto interpolation of higher degree
-
Interpolation &interpolation(FEType typ, FESubType sub, number_t num, SobolevType spa)
-
main “constructor” by finding first if already exists
-
TermVector interpolent(const Unknown &u, const GeomDomain &dom, const Function &f, const Function &gradf, const Function &grad2f)
-
evaluate dofs on a function: dof_i(f) for any dofs related to unknown u and domain
-
bool intersect(const GeomElement &E1, const GeomElement &E2, real_t tol)
-
Point intersectionHalfLineEllipse(const Point &M, const std::vector<real_t> &d, const Point &C, const Point &A, const Point &B, bool &hasUniqueIntersection, real_t tmin, real_t tmax, real_t tol)
-
intersection half line (M,D) with ellipse (C,A,B, tmin, tmax) C center, A first apogee, B second apogee, sector [tmin,tmax], tmin,tmax in [0,2pi] P(t)= C + CA*cos(t) + CB*sin(t) t in (tmin,tmax) P1=P(tmin), P2=P(tmax) return void Point if no intersection or on boundary assume 3D points, A!=B, D!=0 and DxAB!=0 (non paralell)
intersection half line (M,d) with ellipse (C,A,B,tmin,tmax)
-
Point intersectionHalfLinePolygon(const Point &M, const std::vector<real_t> &d, const std::vector<Point> &vs, bool &hasUniqueIntersection, real_t tol)
-
intersection half line (M,D) with polygon given by its vertices
intersection half line (M,d) with polygon vs=(v1,v2,…vn)
-
Point intersectionHalfLineSegment(const Point &M, const std::vector<real_t> &d, const Point &A, const Point &B, bool &hasUniqueIntersection, real_t tol)
-
intersection of half line [M,d) with segment [AB] return void Point if no intersection or non unique point assume 3D points, A!=B, d!=0
intersection half line (M,d) with segment [AB]
-
std::pair<Point, Point> intersectionOfPlanes(const Point &S1, const Point &S2, const Point &S3, const Point &T1, const Point &T2, const Point &T3)
-
straight line intersection I of 2 planes (S1,S2,S3) and (T1,T2,T3) returns a pair of points defining the intersection
straight line intersection of 2 planes defined respectively by 3 non aligned points
-
Point intersectionOfPlanesWithOneSharedPoint(const Point &S1, const Point &S2, const Point &S3, const Point &T2, const Point &T3)
-
straight line intersection of 2 planes (S1,S2,S3) and (S1,T2,T3) S1 is on the intersection, so the remaining calculations are shorter returns a point defining the intersection with S1
straight line intersection of 2 planes defined respectively by 3 non aligned points with one vertex in common
-
bool intersectionOfSegments(const Point &A, const Point &B, const Point &C, const Point &D, Point &I, real_t tol)
-
unique intersection of segments [AB] and [CD], in 2D-3D all points have the same dimension, return true if intersection exists and is unique, else false (CDAB non coplanar or CD//AB) I= (1-alpha)*C + alpha*D = (1-gamma)*A + gamma*B and nCD: normal to CD in CDAB plane gamma = AC.nCD / PQ.nCD alpha = (AP+gamma*AB.CD)/CD.CD alpha and gamma must belong to [0,1] with a tolerance t, say [-t, 1+t]
-
Point intersectionOfStraightLines(const Point &S1, const Point &S2, const Point &T1, const Point &T2, bool &hasIntersect)
-
intersection point I of straight lines (S1S2) and (T1T2) if (S1S2) // (T1T2), I is of size 0 and hasIntersect is set to false else hasIntersect is set to true
intersection of straight lines
-
bool intersectionSegmentQuadrangle(const Point &P, const Point &Q, const Point &A, const Point &B, const Point &C, const Point &D, Point &I, Point &J, real_t tol)
-
bool intersectionSegmentTriangle(const Point &P, const Point &Q, const Point &A, const Point &B, const Point &C, Point &I, Point &J, real_t tol)
-
strict intersection of [P,Q] and triangle [A,B,C] all points must have the same dimension (not checked) return true if some intersection points exist else false in 3D non coplanar case: return one or no point in 3D coplanar or 2D cases: return one or two or no point in other words, if intersection is a segment [I,J] (I!=J) it returns false ans I,J are not updated
-
std::pair<LinearForm, const TermVector*> intg(const GeomDomain &dom, const KernelOperatorOnTermVector &koptv)
-
User single intg routines involving Kernel and TermVector (with up to 5 keys)
-
std::pair<LinearForm, const TermVector*> intg(const GeomDomain &dom, const KernelOperatorOnTermVector &koptv, const IntegrationMethod &im)
-
- Deprecated:
-
use key-value system for optional arguments (_quad, _order, _method, …)
-
std::pair<LinearForm, const TermVector*> intg(const GeomDomain &dom, const KernelOperatorOnTermVector &koptv, const IntegrationMethods &ims)
-
std::pair<LinearForm, const TermVector*> intg(const GeomDomain &dom, const KernelOperatorOnTermVector &koptv, const Parameter &p1)
-
std::pair<LinearForm, const TermVector*> intg(const GeomDomain &dom, const KernelOperatorOnTermVector &koptv, const Parameter &p1, const Parameter &p2)
-
std::pair<LinearForm, const TermVector*> intg(const GeomDomain &dom, const KernelOperatorOnTermVector &koptv, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
std::pair<LinearForm, const TermVector*> intg(const GeomDomain &dom, const KernelOperatorOnTermVector &koptv, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
std::pair<LinearForm, const TermVector*> intg(const GeomDomain &dom, const KernelOperatorOnTermVector &koptv, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
std::pair<LinearForm, const TermVector*> intg(const GeomDomain &dom, const KernelOperatorOnTermVector &koptv, const std::vector<Parameter> &ps)
-
main routine for single integrals involving Kernel and TermVector
-
std::pair<LinearForm, const TermVector*> intg(const GeomDomain &dom, const KernelOperatorOnTermVector &koptv, QuadRule qr, number_t qro)
-
LinearForm intg(const GeomDomain &dom, const KernelOperatorOnUnknowns &kopus)
-
Basic single intg routines with kernels for users (with up to 10 keys)
-
LinearForm intg(const GeomDomain &dom, const KernelOperatorOnUnknowns &kopus, const IntegrationMethod &im, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const KernelOperatorOnUnknowns &kopus, const IntegrationMethods &ims, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const KernelOperatorOnUnknowns &kopus, const Parameter &p1)
-
LinearForm intg(const GeomDomain &dom, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2)
-
LinearForm intg(const GeomDomain &dom, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
LinearForm intg(const GeomDomain &dom, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
LinearForm intg(const GeomDomain &dom, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
LinearForm intg(const GeomDomain &dom, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6)
-
LinearForm intg(const GeomDomain &dom, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7)
-
LinearForm intg(const GeomDomain &dom, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8)
-
LinearForm intg(const GeomDomain &dom, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9)
-
LinearForm intg(const GeomDomain &dom, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9, const Parameter &p10)
-
LinearForm intg(const GeomDomain &dom, const KernelOperatorOnUnknowns &kopus, QuadRule qr, number_t qo, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknown &lcopu)
-
Advanced (linear combinations) single intg routines for users (with up to 10 keys)
-
LinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknown &Lcopu, ComputationType ct, const IntegrationMethod &im, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknown &Lcopu, ComputationType ct, const IntegrationMethods &ims, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknown &Lcopu, ComputationType ct, QuadRule qr, number_t qo, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknown &Lcopu, const IntegrationMethod &im, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknown &Lcopu, const IntegrationMethods &ims, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknown &lcopu, const Parameter &p1)
-
LinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknown &lcopu, const Parameter &p1, const Parameter &p2)
-
LinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknown &lcopu, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
LinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknown &lcopu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
LinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknown &lcopu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
LinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknown &lcopu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6)
-
LinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknown &lcopu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7)
-
LinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknown &lcopu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8)
-
LinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknown &lcopu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9)
-
LinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknown &lcopu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9, const Parameter &p10)
-
LinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknown &Lcopu, QuadRule qr, number_t qo, bool isogeo)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus)
-
Advanced (linear combinations) single intg routines for users (with up to 10 keys)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus, bool isogeo, QuadRule qr, number_t qo = 0, SymType st = _undefSymmetry)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus, const IntegrationMethod &im, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus, const IntegrationMethod &im, SymType st)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus, const Parameter &p1)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus, const Parameter &p1, const Parameter &p2)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9, const Parameter &p10)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus, QuadRule qr, number_t qo, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus, QuadRule qr, number_t qo, SymType st)
-
BilinearForm intg(const GeomDomain &dom, const LcOperatorOnUnknowns &lcopus, SymType st)
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu)
-
Basic single intg routines for users (with up to 10 keys)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, AlgebraicOperator aop, const OperatorOnUnknown &opv, bool isogeo, QuadRule qr, number_t qo = 0, SymType st = _undefSymmetry)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, AlgebraicOperator aop, const OperatorOnUnknown &opv, bool isogeo, SymType st = _undefSymmetry)
-
construct a simple intg bilinear form
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, AlgebraicOperator aop, const OperatorOnUnknown &opv, const IntegrationMethod &im, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, AlgebraicOperator aop, const OperatorOnUnknown &opv, const IntegrationMethod &im, SymType st)
-
- Deprecated:
-
use key-value system for optional arguments (_quad, _order, _method, _symmetry, _isogeo, …)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, AlgebraicOperator aop, const OperatorOnUnknown &opv, QuadRule qr, number_t qo, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, AlgebraicOperator aop, const OperatorOnUnknown &opv, QuadRule qr, number_t qo, SymType st)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, AlgebraicOperator aop, const OperatorOnUnknown &opv, SymType st = _undefSymmetry)
-
construct a simple intg bilinear form
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, ComputationType ct, const IntegrationMethod &im, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, ComputationType ct, const IntegrationMethods &ims, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, ComputationType ct, QuadRule qr, number_t qo, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, const IntegrationMethod &im, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, const IntegrationMethods &ims, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, const Parameter &p1)
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2)
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6)
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7)
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8)
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9)
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9, const Parameter &p10)
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, const std::vector<Parameter> &ps)
-
main routine for single integrals
-
LinearForm intg(const GeomDomain &dom, const OperatorOnUnknown &opu, QuadRule qr, number_t qo, bool isogeo)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus)
-
Basic single intg routines for users (with up to 10 keys)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, bool isogeo, QuadRule qr, number_t qo = 0, SymType st = _undefSymmetry)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, const IntegrationMethod &im, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, const IntegrationMethod &im, SymType st)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, const Parameter &p1)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9, const Parameter &p10)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, const std::vector<Parameter> &ps)
-
main routine for single integrals
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, QuadRule qr, number_t qo, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, QuadRule qr, number_t qo, SymType st)
-
BilinearForm intg(const GeomDomain &dom, const OperatorOnUnknowns &opus, SymType st)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u, bool isogeo)
-
- Deprecated:
-
use key-value system for optional arguments (_quad, _order, _method, _symmetry, _isogeo, …)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u, ComputationType ct, const IntegrationMethod &im, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u, ComputationType ct, const IntegrationMethods &ims, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u, ComputationType ct, QuadRule qr, number_t qo, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u, const IntegrationMethod &im, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u, const IntegrationMethods &ims, bool isogeo)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u, const Parameter &p1)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u, const Parameter &p1, const Parameter &p2)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9, const Parameter &p10)
-
LinearForm intg(const GeomDomain &dom, const Unknown &u, QuadRule qr, number_t qo, bool isogeo)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnTermVectorAndUnknown &koptvv)
-
User single intg routines involving Kernel and TermVector (with up to 5 keys)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnTermVectorAndUnknown &koptvv, const IntegrationMethod &im)
-
construct a simple intg linear form from KernelOperatorOnTermVector
- Deprecated:
-
use key-value system for optional arguments (_quad, _order, _method, …)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnTermVectorAndUnknown &koptvv, const Parameter &p1)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnTermVectorAndUnknown &koptvv, const Parameter &p1, const Parameter &p2)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnTermVectorAndUnknown &koptvv, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnTermVectorAndUnknown &koptvv, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnTermVectorAndUnknown &koptvv, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnTermVectorAndUnknown &koptvv, const std::vector<Parameter> &ps)
-
main routine for double integrals involving Kernel and TermVector
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnTermVectorAndUnknown &koptvv, QuadRule qr, number_t qo)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus)
-
Basic double intg routines with kernels for users.
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, bool isogeo, QuadRule qr, number_t qo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, const IntegrationMethod &im, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, const IntegrationMethod &im, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, const IntegrationMethods &ims, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, const IntegrationMethods &ims, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, const Parameter &p1)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9, const Parameter &p10)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, const std::vector<Parameter> &ps)
-
main routine to double integrals
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, QuadRule qr, number_t qo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const KernelOperatorOnUnknowns &kopus, SymType st)
-
construct a double intg bilinear form from kernel operators combination
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus)
-
Advanced (linear combinations) double intg routines with kernels for users.
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, bool isogeo, QuadRule qr, number_t qo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, const IntegrationMethod &im, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, const IntegrationMethod &im, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, const IntegrationMethods &ims, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, const IntegrationMethods &ims, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, const Parameter &p1)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, const Parameter &p1, const Parameter &p2)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9, const Parameter &p10)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, const std::vector<Parameter> &ps)
-
main routine for advanced (linear combinations) intg routines with kernels
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, QuadRule qr, number_t qo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const LcKernelOperatorOnUnknowns &lckopus, SymType st)
-
construct a double intg bilinear form from kernel operators combination and integration methods
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu)
-
Basic double intg routines for users (with up to 10 keys)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aop, const OperatorOnUnknown &opv, bool isogeo, QuadRule qr, number_t qo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aop, const OperatorOnUnknown &opv, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aop, const OperatorOnUnknown &opv, const IntegrationMethod &im, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aop, const OperatorOnUnknown &opv, const IntegrationMethod &im, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aop, const OperatorOnUnknown &opv, const IntegrationMethods &ims, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aop, const OperatorOnUnknown &opv, const IntegrationMethods &ims, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aop, const OperatorOnUnknown &opv, QuadRule qr, number_t qo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aop, const OperatorOnUnknown &opv, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aopu, const Kernel &ker, AlgebraicOperator aopv, const OperatorOnUnknown &opv, bool isogeo, QuadRule qr, number_t qo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aopu, const Kernel &ker, AlgebraicOperator aopv, const OperatorOnUnknown &opv, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aopu, const Kernel &ker, AlgebraicOperator aopv, const OperatorOnUnknown &opv, const IntegrationMethod &im, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aopu, const Kernel &ker, AlgebraicOperator aopv, const OperatorOnUnknown &opv, const IntegrationMethod &im, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aopu, const Kernel &ker, AlgebraicOperator aopv, const OperatorOnUnknown &opv, const IntegrationMethods &ims, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aopu, const Kernel &ker, AlgebraicOperator aopv, const OperatorOnUnknown &opv, const IntegrationMethods &ims, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aopu, const Kernel &ker, AlgebraicOperator aopv, const OperatorOnUnknown &opv, QuadRule qr, number_t qo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aopu, const Kernel &ker, AlgebraicOperator aopv, const OperatorOnUnknown &opv, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aopu, const OperatorOnKernel &opker, AlgebraicOperator aopv, const OperatorOnUnknown &opv, bool isogeo, QuadRule qr, number_t qo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aopu, const OperatorOnKernel &opker, AlgebraicOperator aopv, const OperatorOnUnknown &opv, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aopu, const OperatorOnKernel &opker, AlgebraicOperator aopv, const OperatorOnUnknown &opv, const IntegrationMethod &im, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aopu, const OperatorOnKernel &opker, AlgebraicOperator aopv, const OperatorOnUnknown &opv, const IntegrationMethod &im, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aopu, const OperatorOnKernel &opker, AlgebraicOperator aopv, const OperatorOnUnknown &opv, const IntegrationMethods &ims, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aopu, const OperatorOnKernel &opker, AlgebraicOperator aopv, const OperatorOnUnknown &opv, const IntegrationMethods &ims, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aopu, const OperatorOnKernel &opker, AlgebraicOperator aopv, const OperatorOnUnknown &opv, QuadRule qr, number_t qo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, AlgebraicOperator aopu, const OperatorOnKernel &opker, AlgebraicOperator aopv, const OperatorOnUnknown &opv, SymType st)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, const IntegrationMethod &im, bool isogeo = false)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, const Parameter &p1)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9, const Parameter &p10)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknown &opu, const std::vector<Parameter> &ps)
-
main routine for double integrals
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus)
-
Basic double intg routines without kernels, for users.
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, bool isogeo, QuadRule qr, number_t qo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, const IntegrationMethod &im, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, const IntegrationMethod &im, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, const IntegrationMethods &ims, bool isogeo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, const IntegrationMethods &ims, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, const Parameter &p1)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9, const Parameter &p10)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, QuadRule qr, number_t qo, SymType st)
-
BilinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const OperatorOnUnknowns &opus, SymType st)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const Unknown &u)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const Unknown &u, const IntegrationMethod &im, bool isogeo = false)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const Unknown &u, const Parameter &p1)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const Unknown &u, const Parameter &p1, const Parameter &p2)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const Unknown &u, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const Unknown &u, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const Unknown &u, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const Unknown &u, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const Unknown &u, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const Unknown &u, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const Unknown &u, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9)
-
LinearForm intg(const GeomDomain &domv, const GeomDomain &domu, const Unknown &u, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7, const Parameter &p8, const Parameter &p9, const Parameter &p10)
-
LinearForm intg(const GeomDomain &domx, const GeomDomain &domy, const OperatorOnUnknown &opu, QuadRule qr, number_t qo, bool isogeo)
-
LinearForm intg(const GeomDomain &domx, const GeomDomain &domy, const Unknown &u, QuadRule qr, number_t qo, bool isogeo)
-
void intgBFBuildParam(const Parameter &p, real_t &bound, bool &isogeom, IntegrationMethod *&meth, IntegrationMethods &meths, QuadRule &qr1, number_t &qo1, QuadRule &qr2, number_t &qo2, SymType &st, const GeomDomain *&extdomu, const GeomDomain *&extdomv)
-
get values of keys used in intg routines
-
void intgBFParamCompatibility(const ParameterKey &key, std::set<ParameterKey> &usedParams)
-
check compatibility between keys used in intg routines
-
void intgLfBuildParam(const Parameter &p, real_t &bound, bool &isogeom, IntegrationMethod *&meth, IntegrationMethods &meths, QuadRule &qr, number_t &qo, SymType &st, ComputationType &ct, const GeomDomain *&extdom)
-
get values of keys used in intg routines
-
void intgLfParamCompatibility(const ParameterKey &key, std::set<ParameterKey> &usedParams)
-
check compatibility between keys used in intg routines
-
SymbolicTermMatrix &inv(const TermMatrix &M)
-
SymbolicTermMatrix &inv(SymbolicTermMatrix &S)
-
void invalidFunction(const string_t &s = "")
-
message sent when function not valid
-
Vector<real_t> invCylinderSidePartGeodesic(const Point &pt, Parameters ¶ms, DiffOpType d)
-
TermMatrix inverse(TermMatrix &A)
-
inline Vector<real_t> invParametrization_BezierSpline(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call
-
inline Vector<real_t> invParametrization_BSpline(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call
-
inline Vector<real_t> invParametrization_C2Spline(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call
-
inline Vector<real_t> invParametrization_CatmullRomSpline(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call
-
inline Vector<real_t> invParametrization_CircArc(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call
-
inline Vector<real_t> invParametrization_EllArc(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call
-
inline Vector<real_t> invParametrization_Ellipse(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call
-
inline Vector<real_t> invParametrization_EllipsoidSidePart(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call
-
inline Vector<real_t> invParametrization_Nurbs(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call
-
inline Vector<real_t> invParametrization_Parallelogram(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call
-
inline Vector<real_t> invParametrization_ParametrizedArc(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call
-
inline Vector<real_t> invParametrization_Piecewise(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call
-
inline Vector<real_t> invParametrization_Quadrangle(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call
-
inline Vector<real_t> invParametrization_Segment(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call
-
inline Vector<real_t> invParametrization_SplineArc(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call
-
inline Vector<real_t> invParametrization_SplineSurface(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call
-
inline Vector<real_t> invParametrization_Triangle(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call (Duffy)
-
inline Vector<real_t> invParametrization_TrunkSidePart(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern invParametrization call
-
vector<pair<ShapeType, vector<number_t>>> ioElementsBySplitting(const Space *sp, map<number_t, number_t> renumbering)
-
construct list of node numbers for each element after splitting space elements return the list of pair of shape O1 element and node number
-
pair<vector<Point>, map<number_t, number_t>> ioPoints(const Space *sp)
-
extract coordinates of output order 1 split mesh from dofs return as a pair, the list of O1 nodes and the renumbering map dofid -> i (rank of O1 node)
-
inline bool is32bits()
-
inline bool is64bits()
-
bool isComment(const string_t &line)
-
check if the current line is not a comment
-
bool isequal(const SymbolicFunction&, const SymbolicFunction&)
-
check equality of two symbolic functions
-
bool isNameAvailable(const string_t &keyname)
-
check if a name is not a system key name
-
bool isPathExist(const string_t &path)
-
check if path exists
-
inline bool isPointInQuadrangle(const Point &P, const Point &A, const Point &B, const Point &C, const Point &D, real_t tol = theEpsilon)
-
test if a point P is inside a quadrangle ABCD
-
bool isPointInSegment(const Point &P, const Point &A, const Point &B, real_t tol)
-
test if P belongs to [A,B], works in 2D-3D, assuming same point dimensions
test if a point P is inside a segment [AB]
-
bool isPointInTriangle(const Point &P, const Point &A, const Point &B, const Point &C, real_t tol = theEpsilon)
-
test if a point P is inside a triangle ABC
-
inline bool isSegmentInQuadrangle(const Point &P, const Point &Q, const Point &A, const Point &B, const Point &C, const Point &D, real_t tol = theEpsilon)
-
test if a segment [PQ] is inside a quadrangle ABCD
-
inline bool isSegmentInSegment(const Point &P, const Point &Q, const Point &A, const Point &B, real_t tol = theEpsilon)
-
test if a segment [PQ] is inside a segment [AB]
-
inline bool isSegmentInTriangle(const Point &P, const Point &Q, const Point &A, const Point &B, const Point &C, real_t tol = theEpsilon)
-
test if a segment [PQ] is inside a triangle ABC
-
bool isTranslatedPoints(const std::vector<Point> &pts1, const std::vector<Point> &pts2, Point &T)
-
check if points pts1 are related by a translation to points pts2 if true update the translation vector T translation vector candidate is built from first construction point (may be not sufficient) any point of pts1 must be related by T to a point of pts2
check if points pts1 are related by a translation to points pts2 (T is the translation vector)
-
inline bool isTriangleInQuadrangle(const Point &P, const Point &Q, const Point &R, const Point &A, const Point &B, const Point &C, const Point &D, real_t tol = theEpsilon)
-
test if a triangle PQR is inside a quadrangle ABCD
-
inline bool isTriangleInTriangle(const Point &P, const Point &Q, const Point &R, const Point &A, const Point &B, const Point &C, real_t tol = theEpsilon)
-
test if a triangle PQR is inside a triangle ABC
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const Parameter &p1)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const Parameter &p1, const Parameter &p2)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const TermVector &X0, const Parameter &p1)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const TermVector &X0, const Parameter &p1, const Parameter &p2)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const TermVector &X0, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const TermVector &X0, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const TermVector &X0, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const TermVector &X0, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const TermVector &X0, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const TermVector &X0, Preconditioner &P, const Parameter &p1)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const TermVector &X0, Preconditioner &P, const Parameter &p1, const Parameter &p2)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const TermVector &X0, Preconditioner &P, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const TermVector &X0, Preconditioner &P, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const TermVector &X0, Preconditioner &P, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const TermVector &X0, Preconditioner &P, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const TermVector &X0, Preconditioner &P, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, const TermVector &X0, Preconditioner &P, const std::vector<Parameter> &ps)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, Preconditioner &P, const Parameter &p1)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, Preconditioner &P, const Parameter &p1, const Parameter &p2)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, Preconditioner &P, const Parameter &p1, const Parameter &p2, const Parameter &p3)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, Preconditioner &P, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, Preconditioner &P, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, Preconditioner &P, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6)
-
TermVector iterativeSolve(TermMatrix &A, TermVector &B, Preconditioner &P, const Parameter &p1, const Parameter &p2, const Parameter &p3, const Parameter &p4, const Parameter &p5, const Parameter &p6, const Parameter &p7)
-
TermVector iterativeSolveGen(IterativeSolverType isType, TermMatrix &A, TermVector &B, const TermVector &X0, Preconditioner &P, real_t tol, number_t iterMax, const real_t omega, const number_t krylovDim, const number_t verboseLevel, const string_t &nam)
-
inline complex_t j_s(const complex_t &z, real_t x, const complex_t &q)
-
- Parameters:
-
q – exp(-ixz) /(w2’(z)-qw2(z))
-
void jacobiPolynomials(real_t a, real_t b, real_t, std::vector<real_t>&)
-
Jacobi polynomials on [-1, 1] up to order n P_0 = 1, P_1 = (2*(a+1)+a+b+2)*(x-1) / 2 P_{n+1}*{ 2*(n+1)(n+a+b+1)(2*n+a+b) } = { (2*n+1+a+b)(a^2-b^2) + (2*n+a+b)(2*n+1+a+b)(2*n+2+a+b)*x } * P_{n} -{ 2*(n+a)*(n+b)(2*n+2+a+b) } * P_{n-1} , n > 0.
-
void jacobiPolynomials01(real_t a, real_t b, real_t, std::vector<real_t>&)
-
Jacobi polynomials on [0, 1] up to order n.
-
inline string_t join(const Strings &ss, const string_t &delim)
-
join utility
-
OperatorOnUnknown &jump(const Unknown &un)
-
OperatorOnUnknown &jump(OperatorOnUnknown &opu)
-
template<typename K>
MatrixEigenDense<K> kroneckerProduct(MatrixEigenDense<K> &mat1, MatrixEigenDense<K> &mat2)
-
template<typename T>
T laguerre(T (*f)(real_t), real_t t0, real_t a, number_t nq, std::vector<real_t> &quadpoints, std::vector<real_t> &quadweights)
-
template<typename T>
T laguerre(T (*f)(real_t, Parameters&), Parameters &pars, real_t t0, real_t a, number_t nq, std::vector<real_t> &quadpoints, std::vector<real_t> &quadweights)
-
void LaguerreTable(number_t n, std::vector<real_t> &quadpoints, std::vector<real_t> &quadweights)
-
OperatorOnUnknown &lap(const Unknown &un)
-
OperatorOnUnknown &lapG(const Unknown &un, const complex_t &axx, const complex_t &ayy, const complex_t &azz)
-
real_t Laplace2d(const Point &x, const Point &y, Parameters &pars)
-
value
-
Vector<real_t> Laplace2dGradx(const Point &x, const Point &y, Parameters &pars)
-
gradx
-
Matrix<real_t> Laplace2dGradxy(const Point &x, const Point &y, Parameters &pa)
-
grad_x grad_y
-
Vector<real_t> Laplace2dGrady(const Point &x, const Point &y, Parameters &pars)
-
grady
-
Kernel Laplace2dKernel(Parameters &pars = defaultParameters)
-
construct a Laplace2d kernel
-
real_t Laplace2dNxdotGradx(const Point &x, const Point &y, Parameters &pars)
-
nx dot grad_x
-
real_t Laplace2dNydotGrady(const Point &x, const Point &y, Parameters &pars)
-
ny dot grad_y
-
real_t Laplace3d(const Point &x, const Point &y, Parameters &pars)
-
value
-
Vector<real_t> Laplace3dGradx(const Point &x, const Point &y, Parameters &pars)
-
gradx
-
Vector<real_t> Laplace3dGrady(const Point &x, const Point &y, Parameters &pars)
-
grady
-
Kernel Laplace3dKernel(Parameters &pars = defaultParameters)
-
construct a Laplace3d kernel
-
real_t Laplace3dNxdotGradx(const Point &x, const Point &y, Parameters &pars)
-
nx dot grad_x
-
real_t Laplace3dNydotGrady(const Point &x, const Point &y, Parameters &pars)
-
ny dot grad_y
-
template<typename S>
void ldlstarFactorize(LargeMatrix<S> &mat)
-
void ldlstarFactorize(TermMatrix &A, TermMatrix &Af)
-
TermVectors ldlstarLeftSolve(TermMatrix &A, const std::vector<TermVector> &Bs, TermMatrix &Af)
-
TermVector ldlstarLeftSolve(TermMatrix &A, const TermVector &B, TermMatrix &Af)
-
TermVectors ldlstarSolve(TermMatrix &A, const std::vector<TermVector> &Bs, TermMatrix &Af)
-
TermVector ldlstarSolve(TermMatrix &A, const TermVector &B, TermMatrix &Af)
-
template<typename S>
void ldltFactorize(LargeMatrix<S> &mat)
-
void ldltFactorize(TermMatrix &A, TermMatrix &Af)
-
factorization of a TermMatrix A in Af when the TermMatrix is stored as a compressed sparse matrix, it is restored as a skyline matrix when the TermMatrix is a multiple unknown matrix, the matrix is rewritten in a “single” unknown matrix stored as a skyline matrix or a dense matrix if all blocks are dense
-
TermVectors ldltLeftSolve(TermMatrix &A, const std::vector<TermVector> &Bs, TermMatrix &Af)
-
TermVector ldltLeftSolve(TermMatrix &A, const TermVector &B, TermMatrix &Af)
-
TermVectors ldltSolve(TermMatrix &A, const std::vector<TermVector> &Bs, TermMatrix &Af)
-
TermVector ldltSolve(TermMatrix &A, const TermVector &B, TermMatrix &Af)
-
void legendreFunctions(real_t, std::vector<std::vector<real_t>> &Pml)
-
compute all Legendre functions up to order n for any real x: P^m_l(x) where n = Pml.size()-1 and l = 0,.., n and m = 0,..,n P^m_l(x) = (-1)^{m} * (1-x^2)^{m/2} d^m/dx^m[ P_l(x) ] where P_l is Legendre polynomial of degree l
-
void legendreFunctionsDerivative(real_t, const std::vector<std::vector<real_t>>&, std::vector<std::vector<real_t>>&)
-
compute all Legendre functions derivatives up to order n for any real x: P’^m_l(x) from given Legendre functions up to order n for any real x: P^m_l(x) where n = Pml.size()-1 and l = 0,.., n and m = 0,..,n
-
void legendreFunctionsDerivativeTest(real_t x, number_t n, std::ostream &out)
-
void LegendreFunctionsDerivativeTest(real_t, number_t, std::ostream&)
-
output function for test of Legendre Functions derivatives
-
void legendreFunctionsTest(real_t x, number_t n, std::ostream&)
-
output function for test of Legendre Functions
-
void legendrePolynomials(real_t, std::vector<real_t>&)
-
Legendre polynomials on [-1, 1] up to order n P_0(x) = 1, P_1(x) = x, n*P_n(x) = (2*n-1) x P_{n-1}(x) - (n-1) P_{n-2}(x) , n > 1.
-
void legendrePolynomialsDerivative(real_t, std::vector<real_t>&)
-
derivatives of Legendre polynomials on [-1, 1] up to order n P’0(x) = 0, P’_1(x) = 1 (1-x^2) P’_n(x) = - n x P_n(x) + n P{n-1}(x) , n > 1
-
template<typename T>
Vector<T> lineSpace(const T &a, const T &b, number_t n)
-
generates n points xi = a+i*dx with x = (b-a)/(n-1).
-
template<typename T>
std::vector<T> linSpace(const T &a, const T &b, number_t n)
-
return vector xi=a+i(b_a)/(n-1) i=0,n-1
-
void loadMeditElements(std::istream &data, number_t spaceDim, ShapeType type, number_t dim, number_t nbVertices, std::vector<MELT> &melts, std::map<number_t, std::set<number_t>> &doms, std::map<ShapeType, ELTDEF> &elMap)
-
Geometry *locate(const Point &x, Point &dx, const std::map<number_t, Geometry*> &components, Geometry *last)
-
void locateError(bool warn, const string_t&, const GeomDomain&, const Point&, real_t d)
-
error management for locate tool
-
inline void locateToleranceFactor(real_t f)
-
inline SuTermVector log(const SuTermVector &s)
-
inline SymbolicFunction &log(const SymbolicFunction &f)
-
inline TermVector log(const TermVector &s)
-
inline SuTermVector log10(const SuTermVector &s)
-
inline SymbolicFunction &log10(const SymbolicFunction &f)
-
inline TermVector log10(const TermVector &s)
-
complex_t logGamma(const complex_t&)
-
Paul Godfrey’s Lanczos implementation of the Gamma function.
-
real_t logGamma(real_t)
-
return Log(Gamma(x))
-
complex_t logGamma1(const complex_t&)
-
return Log(Gamma(z))
-
complex_t LogGamma1(const complex_t &z)
-
string_t logo(const dimen_t num)
-
logo returns random XLiFE++ logo (among 10!) as a multi-line string
logo returns ‘random’ XLiFE++ logo (among 5!) as a multi-line string
-
bool lookfor(const string_t BeginSection, FILE *data)
-
bool lookfor(const string_t BeginSection, ifstream &data)
-
string_t lowercase(const string_t &s)
-
convert “AbCdefg” to “abcdefg”
returns string_t converted to lowercase
-
template<typename T>
Matrix<T> &lu(Matrix<T> &A, Matrix<T> &LU)
-
LU factorization with no permutation, L lower triangular matrix with diagonal 1 stored in strict lower part of LU U upper triangular part stored in upper part of LU matrix LU may be the same as A.
-
template<typename T>
Matrix<T> &lu(Matrix<T> &A, Matrix<T> &LU, std::vector<dimen_t> &P)
-
LU factorization with real row permutation, PA = LU where P is a permutation matrix represented by a permutation vector p L lower triangular matrix with diagonal 1 stored in strict lower part of LU U upper triangular part stored in upper part of LU be care with operation on LU, permutation may have been applied for instance solving Ax=b should be done as LUx=Pb matrix LU may be the same as A.
-
template<typename S>
void luFactorize(LargeMatrix<S> &mat, bool withPermutation = true)
-
void luFactorize(TermMatrix &A, TermMatrix &Af, bool withPermutation)
-
TermVectors luLeftSolve(TermMatrix &A, const std::vector<TermVector> &Bs, TermMatrix &Af)
-
TermVector luLeftSolve(TermMatrix &A, const TermVector &B, TermMatrix &Af)
-
TermVectors luSolve(TermMatrix &A, const std::vector<TermVector> &Bs, TermMatrix &Af)
-
TermVector luSolve(TermMatrix &A, const TermVector &B, TermMatrix &Af)
-
std::vector<Parameter> makeParList(int nbpar, ...)
-
complex_t mal_integrand(real_t t, Parameters &pars)
-
integrand at (t,z), extern call
-
inline void mapShapeValues(RefElement &refElt, MeshElement &melt, GeomMapData &mapdata, bool mapsh, FEMapType femt, bool rotsh, number_t ord, bool changeSign, const Vector<real_t> *sign, dimen_t dimfun, dimen_t &dimfunp, const ShapeValues &sh, ShapeValues &shmap)
-
TermVector mapTo(const TermVector &v, const GeomDomain &dom, const Unknown &u, bool useNearest, bool errorOnOutDom, Function *fmap, real_t tol)
-
inline number_t materialIdFromParameters(Parameters &pars)
-
template<typename A_it, typename B_it, typename R_it>
void matmat(A_it it_ma, const dimen_t nbk, B_it it_mb, const dimen_t nbr, const dimen_t nbc, R_it it_mr)
-
template<typename K, typename V1_it, typename V2_it>
V2_it matvec(const Matrix<K> &m, const V1_it it_v1b, const V2_it it_v2b)
-
template<typename K, typename ITV, typename ITR>
void matvec(const SparseMatrix<K> &m, const ITV itv, const ITR itr)
-
template<typename M_it, typename V1_it, typename V2_it>
void matvec(M_it it_mb, const V1_it it_v1b, const V1_it it_v1e, V2_it it_v2b, V2_it it_v2e)
-
inline complex_t maxAbsVal(const complex_t&)
-
inline complex_t maxAbsVal(const real_t&)
-
template<typename K>
complex_t maxAbsVal(const Vector<K> &u)
-
return the value (in complex) of component being the largest one in absolute value
-
void maxDegreeRule(int degree, const string_t &name, ShapeType sh, int maxdeg)
-
warning message
-
template<typename T_iterator>
T_iterator maxElementTpl(T_iterator b, T_iterator e)
-
returns iterator to first occurrence of maximum absolute magnitude in stl container
-
int_t maxSeparator(const Point &p, const Point &q, int &c, real_t &s)
-
separation function used by KdTree
-
template<typename T, typename U, typename V>
T maxTpl(const T &a, const U &b, const V &c)
-
returns maximum of 3 values
-
Matrix<complex_t> Maxwell3d(const Point &x, const Point &y, Parameters &pa)
-
kernel computation: IG_t(k_s; x, y)=G(k_s; x, y)*I_3 + 1/k_s^2 * Hess(G(k_s; x, y)-G(k_p; x, y))
value
-
Matrix<complex_t> Maxwell3dCurlx(const Point &x, const Point &y, Parameters &pa)
-
kernel computation: Curlx(IG_t)
curlx
-
Matrix<complex_t> Maxwell3dCurlxy(const Point &x, const Point &y, Parameters &pa)
-
kernel computation: CurlxCurly(IG_t)
curlx.curly
-
Matrix<complex_t> Maxwell3dCurly(const Point &x, const Point &y, Parameters &pa)
-
kernel computation: Curly(IG_t)
curly
-
Vector<complex_t> Maxwell3dDivx(const Point &x, const Point &y, Parameters &pa)
-
kernel computation: Divx(IG_t)
divx
-
complex_t Maxwell3dDivxy(const Point &x, const Point &y, Parameters &pa)
-
kernel computation: DivxDivy(IG_t)
divx.divy
-
Vector<complex_t> Maxwell3dDivy(const Point &x, const Point &y, Parameters &pa)
-
kernel computation: Divy(IG_t)
divy
-
Kernel Maxwell3dKernel(const complex_t &k, const real_t &t = 0)
-
construct a Maxwell3d kernel from complex k
-
Kernel Maxwell3dKernel(const real_t &k, const real_t &t = 0)
-
construct a Maxwell3d kernel from real k
-
Kernel Maxwell3dKernel(Parameters& = defaultParameters)
-
construct a Maxwell3d kernel from parameters
-
OperatorOnUnknown &mean(const Unknown &un)
-
OperatorOnUnknown &mean(OperatorOnUnknown &opu)
-
inline real_t measure(const GeomDomain &g)
-
measure (length, surface or volume) of Domain
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 20 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 19 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 18 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 17 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 16 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 15 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 14 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 13 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 12 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 11 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 10 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 9 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 8 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 7 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 6 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 5 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 4 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, const GeomDomain&, S_ name)
-
merge 3 geometrical domains (true union of elements)
-
template<typename S_>
GeomDomain &merge(const GeomDomain&, const GeomDomain&, S_ name)
-
merge 2 geometrical domains (true union of elements)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, const GeomDomain &d13, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, const GeomDomain &d13, const GeomDomain &d14, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, const GeomDomain &d13, const GeomDomain &d14, const GeomDomain &d15, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, const GeomDomain &d13, const GeomDomain &d14, const GeomDomain &d15, const GeomDomain &d16, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, const GeomDomain &d13, const GeomDomain &d14, const GeomDomain &d15, const GeomDomain &d16, const GeomDomain &d17, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, const GeomDomain &d13, const GeomDomain &d14, const GeomDomain &d15, const GeomDomain &d16, const GeomDomain &d17, const GeomDomain &d18, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, const GeomDomain &d13, const GeomDomain &d14, const GeomDomain &d15, const GeomDomain &d16, const GeomDomain &d17, const GeomDomain &d18, const GeomDomain &d19, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, const GeomDomain &d13, const GeomDomain &d14, const GeomDomain &d15, const GeomDomain &d16, const GeomDomain &d17, const GeomDomain &d18, const GeomDomain &d19, const GeomDomain &d20, const char *name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, const GeomDomain &d13, const GeomDomain &d14, const GeomDomain &d15, const GeomDomain &d16, const GeomDomain &d17, const GeomDomain &d18, const GeomDomain &d19, const GeomDomain &d20, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, const GeomDomain &d13, const GeomDomain &d14, const GeomDomain &d15, const GeomDomain &d16, const GeomDomain &d17, const GeomDomain &d18, const GeomDomain &d19, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, const GeomDomain &d13, const GeomDomain &d14, const GeomDomain &d15, const GeomDomain &d16, const GeomDomain &d17, const GeomDomain &d18, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, const GeomDomain &d13, const GeomDomain &d14, const GeomDomain &d15, const GeomDomain &d16, const GeomDomain &d17, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, const GeomDomain &d13, const GeomDomain &d14, const GeomDomain &d15, const GeomDomain &d16, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, const GeomDomain &d13, const GeomDomain &d14, const GeomDomain &d15, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, const GeomDomain &d13, const GeomDomain &d14, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, const GeomDomain &d13, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, const GeomDomain &d12, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, const GeomDomain &d11, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, const GeomDomain &d10, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, const GeomDomain &d9, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, const GeomDomain &d8, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, const GeomDomain &d7, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, const GeomDomain &d6, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, const GeomDomain &d5, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, const GeomDomain &d4, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, const GeomDomain &d3, string_t name)
- template GeomDomain & merge (const GeomDomain &d1, const GeomDomain &d2, string_t name)
-
inline Mesh merge(const Mesh &m1, const Mesh &m2, bool mergeSharedBoundary = true, const string_t &name = "#Omega")
-
inline Mesh merge(const Mesh &m1, const Mesh &m2, const Mesh &m3, bool mergeSharedBoundary = true, const string_t &name = "#Omega")
-
inline Mesh merge(const Mesh &m1, const Mesh &m2, const Mesh &m3, const Mesh &m4, bool mergeSharedBoundary = true, const string_t &name = "#Omega")
-
inline Mesh merge(const Mesh &m1, const Mesh &m2, const Mesh &m3, const Mesh &m4, const Mesh &m5, bool mergeSharedBoundary = true, const string_t &name = "#Omega")
- template GeomDomain & merge (const std::vector< const GeomDomain * > &doms, const char *name)
-
template<typename S_>
GeomDomain &merge(const std::vector<const GeomDomain*> &doms, S_ name)
-
merge some geometrical domains (true union of elements) GeomDomains must be MeshDomain of same dimension
merge some geometrical domains (true union of elements)
- template GeomDomain & merge (const std::vector< const GeomDomain * > &doms, string_t name)
-
Mesh merge(const std::vector<const Mesh*> &ms, bool mergeSharedBoundary = true, const string_t &name = "#Omega")
-
merge meshes of same dimension
- template GeomDomain & merge (const std::vector< GeomDomain * > &doms, const char *name)
-
create the domain made of union of elements (same dimension)
-
template<typename S_>
GeomDomain &merge(const std::vector<GeomDomain*> &doms, S_ name)
-
merge some geometrical domains (true union of elements) GeomDomains must be MeshDomain of same dimension
merge some geometrical domains (true union of elements), non const version
- template GeomDomain & merge (const std::vector< GeomDomain * > &doms, string_t name)
-
TermVector merge(const TermVector&, const TermVector&)
-
merge two termvectors, preserving values of first one when common dofs
-
std::map<const Unknown*, Constraints*> mergeConstraints(std::vector<Constraints*> &constraints)
-
merge constraints systems (if more than one conditions) it takes as input a vector of Constraints (each corresponding to an essential condition) and produces a map of Constraints indexed by unknown with two cases:
merge constraints
Case of uncoupled unknowns (u1/v1, u2/v2 referred to same unknown u/v), u and v are not coupled by constraints u1 u2 v1 v2 —————–— u1 u2 v1 v2 c1 |cu1 0 0 0 | | f1 ——-— ——— c2 | 0 cu2 0 0 | = | f2 ==> Cu = |cu1 0 | = fu= | f1 Cv = |cv1 cv2| = fv= | f3 c3 | 0 cv1 cv2 | | f3 | 0 cu2 | | f2 ———
The merging process involving u1, u2 referring to same unknown u produces
Constraints object where common dofs are merged One Constraints object for each unknown is created and returnedCase of coupled unknowns (u1/v1, u2/v2 referred to same unknown u/v), u and v are coupled at least by one constraint u1 u2 v1 v2 —————-— u v c1 |cu1 0 0 0 | = | f1 ——— c2 | 0 cu2 cv1 cv2 | | f2 ==> |Cu Cv | = f
A global
Constraints matrix is created and returned (indexed by 0)NOTE: when merging some Constraints in a new one the old ones are deleted by this function
-
Space *mergeSubspaces(Space *&sp1, Space *&sp2, bool newSubspaces)
-
merge subspaces given by a list of Space pointer the union is allowed only for subspaces of same root space this function may return the root space, one of the subspaces or a new subspace if newSubspaces is true, new subspaces with union as parent are created and return as space pointers
merge two subspaces
-
Space *mergeSubspaces(std::vector<Space*> &sps, bool newSubspaces = false)
-
merge a list of subspaces
-
SuTermMatrix *mergeSuTermMatrix(const std::list<SuTermMatrix*>&)
-
merge SuTerMatrix’s referring to the same vector unknown
-
SuTermVector *mergeSuTermVector(const std::list<SuTermVector*>&)
-
merge blocks with components of the same unknown
-
template<typename T>
string_t message(const string_t &msgIds, const T &v, Messages *msgSrc = theMessages_p)
-
templated message functions (shortcuts avoiding the use of MsgData object)
-
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9, typename T10>
string_t message(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, const T9 &v9, const T10 &v10, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9>
string_t message(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, const T9 &v9, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8>
string_t message(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, const T8 &v8, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7>
string_t message(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, const T7 &v7, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
string_t message(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, const T6 &v6, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2, typename T3, typename T4, typename T5>
string_t message(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, const T5 &v5, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2, typename T3, typename T4>
string_t message(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, const T4 &v4, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2, typename T3>
string_t message(const string_t &msgIds, const T1 &v1, const T2 &v2, const T3 &v3, Messages *msgSrc = theMessages_p)
-
template<typename T1, typename T2>
string_t message(const string_t &msgIds, const T1 &v1, const T2 &v2, Messages *msgSrc = theMessages_p)
-
string_t message(const string_t &msgIds, MsgData &msgData, Messages *msgSrc)
-
main function to throw an error/warning/info message where
build formated message
exemple: to throw the internal error with an int msgId and a string s paramaters data << s; msg(“msg_undef”, data, errInternal,_error);
NOTE that MsgData structure is cleared after call. data and errInternal,_error have default values theMessageData and theMessages_p
- Parameters:
-
msgIds – the string id of a message in this collection
msgData – a data object containing the message parameters
msgSrc – pointer to an error message formats collection
-
template<typename T_iterator>
T_iterator minElementTpl(T_iterator b, T_iterator e)
-
returns iterator to first occurrence of minimum absolute magnitude in stl container
-
template<typename T, typename U, typename V>
T minTpl(const T &a, const U &b, const V &c)
-
returns minimum of 3 values
-
void msg(const string_t &msgIds, MsgData &msgData, Messages *msgSrc, MsgType &msgType)
-
throw messages
-
void msg(const string_t &msgIds, MsgData &msgData, Messages *msgSrc, MsgType msgType = _info)
-
general message handler
-
void msgInit(const string_t &msgPath, std::ofstream &out)
-
initialization procedure for messages handling
initialization of engine for messages handling
-
void mshExport(const GeomDomain &dom, const std::vector<Point> &coords, const splitvec_t &elementsInfo, std::ostream &out)
-
export a split mesh of a domain to msh format
-
number_t mshType(ShapeType sht, number_t order)
-
returns the id msh number of a shape, according to the finite elements order
-
void mtlbExport(const GeomDomain &dom, const std::vector<Point> &coords, const splitvec_t &elementsInfo, std::ostream &out)
-
export a split mesh of a domain to Matlab - Octave format
-
void mtlbExport(const GeomDomain &dom, const vector<Point> &coords, const vector<pair<ShapeType, vector<number_t>>> &elementsInfo, std::ostream &out)
-
template<typename T, typename V, typename R>
void multFactMatrixVector(const LargeMatrix<T> &mat, const std::vector<V> &vec, std::vector<R> &res)
-
product with factorized matrix no permutation: L*U*X or L*D*Lt*X or (L*D*L*)*X row permutation (PA=LU) : inv(P)*L*U*X or inv(P)*L*D*Lt*X or inv(P)*(L*D*L*)*X col permutation (AQ=LU) : L*U*inv(Q)*X or L*D*Lt*inv(Q)*X or (L*D*L*)*inv(Q)*X row and col permutation (PAQ=LU) : inv(P)*L*U*inv(Q)*X or inv(P)*L*D*Lt*inv(Q)*X or inv(P)*(L*D*L*)*inv(Q)*X called by multMatrixVector functions
-
template<typename S1, typename S2>
void multInverMatrixVector(const LargeMatrix<S1> &mat, std::vector<S2> &vec, std::vector<typename Conditional<NumTraits<S1>::IsComplex, S1, S2>::type> &res, FactorizationType fac)
-
template<typename K1, typename K2>
void multMatMat(const MatrixEigenDense<K1> &mat1, const MatrixEigenDense<K2> &mat2, MatrixEigenDense<typename Conditional<NumTraits<K1>::IsComplex, K1, K2>::type> &res)
-
template<typename T>
ApproximateMatrix<T> &multMatrix(ApproximateMatrix<T> &A, ApproximateMatrix<T> &B, ApproximateMatrix<T> &AB)
-
template<typename T>
ApproximateMatrix<T> &multMatrix(ApproximateMatrix<T> &A, LargeMatrix<T> &L, ApproximateMatrix<T> &AL)
-
template<typename T>
ApproximateMatrix<T> &multMatrix(LargeMatrix<T> &L, ApproximateMatrix<T> &A, ApproximateMatrix<T> &LA)
-
template<typename T>
LowRankMatrix<T> &multMatrix(LargeMatrix<T> &L, LowRankMatrix<T> &A, LowRankMatrix<T> &AL)
-
product of a LargeMatrix and a LowRankMatrix
-
template<typename T>
LowRankMatrix<T> &multMatrix(LowRankMatrix<T> &A, LargeMatrix<T> &L, LowRankMatrix<T> &AL)
-
product of a LowRankMatrix and a LargeMatrix
-
template<typename T>
LowRankMatrix<T> &multMatrix(LowRankMatrix<T> &A, LowRankMatrix<T> &B, LowRankMatrix<T> &AB)
-
product of two LowRankMatrix’s
-
template<typename SA, typename SB, typename SR>
void multMatrixMatrix(const LargeMatrix<SA> &mA, const LargeMatrix<SB> &mB, LargeMatrix<SR> &mR)
-
extern template product matrix*matrix the storage of the resulting matrix is ALWAYS dense there is no chance to get a sparse matrix except in case of product with a diagonal matrix where the storage is unchanged
-
template<typename SA, typename SB, typename SR>
void multMatrixMatrix(const LargeMatrix<SA> &mA, const std::vector<SB> &mB, LargeMatrix<SR> &mR)
-
template<typename SA, typename SB, typename SR>
void multMatrixMatrix(const std::vector<SA> &mA, const LargeMatrix<SB> &mB, LargeMatrix<SR> &mR)
-
LargeMatrix<complex_t> multMatrixScalar(const LargeMatrix<complex_t> &mat, const real_t v)
-
Multiple a complex Matrix with real scalar The result matrix will point to the same storage.
- Parameters:
-
mat – complex matrix
v – real scalar
- Returns:
-
result matrix which share the same storage.
-
LargeMatrix<complex_t> multMatrixScalar(const LargeMatrix<real_t> &mat, const complex_t v)
-
Multiple a real Matrix with complex scalar The result matrix will point to the same storage.
- Parameters:
-
mat – real matrix
v – complex scalar
- Returns:
-
complex matrix which share the same storage.
-
template<typename T>
LargeMatrix<T> multMatrixScalar(const LargeMatrix<T> &mat, const T v)
-
Multiple a largeMatrix with a scalar The result matrix will point to the same storage.
- Parameters:
-
mat – matrix
v – scalar
- Returns:
-
result matrix which shares the same storage.
-
template<typename T, typename I>
Vector<T> multMatrixVector(const HMatrix<T, I> &h, const Vector<T> &x)
-
hmatrix vector product
-
void multMatrixVector(const LargeMatrix<complex_t> &mat, const std::vector<real_t> &vec, std::vector<complex_t> &res)
-
void multMatrixVector(const LargeMatrix<Matrix<complex_t>> &mat, const std::vector<Vector<real_t>> &vec, std::vector<Vector<complex_t>> &res)
-
void multMatrixVector(const LargeMatrix<Matrix<real_t>> &mat, const std::vector<Vector<complex_t>> &vec, std::vector<Vector<complex_t>> &res)
-
template<typename T>
void multMatrixVector(const LargeMatrix<Matrix<T>> &mat, const std::vector<Vector<T>> &vec, std::vector<Vector<T>> &res)
-
void multMatrixVector(const LargeMatrix<real_t> &mat, const std::vector<complex_t> &vec, std::vector<complex_t> &res)
-
template<typename T>
void multMatrixVector(const LargeMatrix<T> &mat, const std::vector<T> &vec, std::vector<T> &res)
-
templated mat<T> * vec<T>
-
template<typename T, typename V, typename R>
void multMatrixVector(const LargeMatrix<T> &mat, V *vp, R *rp)
-
templated mat<T> * vec<V> (pointer form)
-
void multMatrixVector(const MatrixEntry&, const VectorEntry&, VectorEntry&)
-
matrix * vector
-
TermVector multMatrixVector(const SymbolicTermMatrix &S, const TermVector &X)
-
TermVector &multMatrixVector(const TermMatrix&, const TermVector&, TermVector&)
-
product TermMatrix * TermVector
-
template<typename Scalar, typename ScalarTypeX, typename MatrixType>
void multMatVecLargeMatrixAdapter(const LargeMatrixAdapter<MatrixType, Scalar> &m, const MultiVec<ScalarTypeX> &x, MultiVec<typename Conditional<NumTraits<Scalar>::IsComplex, Scalar, ScalarTypeX>::type> &y)
-
template<typename T>
void multScalarThenAssign(TermVector &tv, const T &t)
-
operation U*=t
p*=t
-
void multScalarThenAssign(Vector<real_t> &v, const complex_t &c)
-
template<typename T, typename V, typename R>
void multVectorFactMatrix(const LargeMatrix<T> &mat, const std::vector<V> &vec, std::vector<R> &res)
-
product with factorized matrix A=LU, or A=LDLt or A =LDL* no permutation: X*L*U = (Ut*Lt*Xt)t row permutation (PA=LU) : X*inv(P)*L*U = Ut*Lt*inv(P)t*Xt = Ut*Lt*P*Xt col permutation (AQ=LU) : X*L*U*inv(Q) = inv(Q)t*Ut*Lt*Xt = Q*Ut*Lt*Xt row and col permutation (PAQ=LU) : X*inv(P)*L*U*inv(Q) = inv(Q)t*Ut*Lt*inv(P)t*Xt = Q*Ut*Lt*P*Xt called by multMatrixVector
-
void multVectorMatrix(const LargeMatrix<complex_t> &mat, const std::vector<real_t> &vec, std::vector<complex_t> &res)
-
void multVectorMatrix(const LargeMatrix<Matrix<complex_t>> &mat, const std::vector<Vector<real_t>> &vec, std::vector<Vector<complex_t>> &res)
-
void multVectorMatrix(const LargeMatrix<Matrix<real_t>> &mat, const std::vector<Vector<complex_t>> &vec, std::vector<Vector<complex_t>> &res)
-
template<typename T>
void multVectorMatrix(const LargeMatrix<Matrix<T>> &mat, const std::vector<Vector<T>> &vec, std::vector<Vector<T>> &res)
-
void multVectorMatrix(const LargeMatrix<real_t> &mat, const std::vector<complex_t> &vec, std::vector<complex_t> &res)
-
template<typename T>
void multVectorMatrix(const LargeMatrix<T> &mat, const std::vector<T> &vec, std::vector<T> &res)
-
template<typename T, typename V, typename R>
void multVectorMatrix(const LargeMatrix<T> &mat, V *vp, R *rp)
-
templated vec<V> * mat<T> (pointer form)
-
void multVectorMatrix(const MatrixEntry&, const VectorEntry&, VectorEntry&)
-
vector * matrix
-
void multVectorMatrix(const std::vector<complex_t> &vec, const LargeMatrix<real_t> &mat, std::vector<complex_t> &res)
-
void multVectorMatrix(const std::vector<real_t> &vec, const LargeMatrix<complex_t> &mat, std::vector<complex_t> &res)
-
template<typename T>
void multVectorMatrix(const std::vector<T> &vec, const LargeMatrix<T> &mat, std::vector<T> &res)
-
void multVectorMatrix(const std::vector<Vector<complex_t>> &vec, const LargeMatrix<Matrix<real_t>> &mat, std::vector<Vector<complex_t>> &res)
-
void multVectorMatrix(const std::vector<Vector<real_t>> &vec, const LargeMatrix<Matrix<complex_t>> &mat, std::vector<Vector<complex_t>> &res)
-
template<typename T>
void multVectorMatrix(const std::vector<Vector<T>> &vec, const LargeMatrix<Matrix<T>> &mat, std::vector<Vector<T>> &res)
-
TermVector &multVectorMatrix(const TermMatrix&, const TermVector&, TermVector&)
-
product TermVector * TermMatrix
-
TermVector &multVectorMatrix(const TermVector&, const TermMatrix&, TermVector&)
-
product TermVector * TermMatrix
-
TermVector multVectorMatrix(const TermVector &X, const SymbolicTermMatrix &S)
-
void multVectorMatrix(const VectorEntry&, const MatrixEntry&, VectorEntry&)
-
vector * matrix
-
template<typename T, typename V, typename R>
void multVectorMatrix(V *vp, const LargeMatrix<T> &mat, R *rp)
-
templated vec<V> * mat<T> (pointer form)
-
OperatorOnUnknown &nabla(const Unknown &un)
-
OperatorOnKernel &nabla_x(const Kernel&)
-
grad_x(k)
-
OperatorOnKernel &nabla_x(OperatorOnKernel&)
-
grad_x(opk)
-
OperatorOnKernel &nabla_y(const Kernel&)
-
grad_y(k)
-
OperatorOnKernel &nabla_y(OperatorOnKernel&)
-
grad_y(opk)
-
OperatorOnUnknown &nablaG(const Unknown &un, const complex_t &ax, const complex_t &ay, const complex_t &az, const complex_t &at)
-
OperatorOnUnknown &nablaS(const Unknown &un)
-
int nbPar(const ITPARENTS &itpar)
-
OperatorOnFunction &ncross(const Function&)
-
n^f
-
OperatorOnUnknown &ncross(const Unknown &un)
-
OperatorOnFunction &ncross(OperatorOnFunction&)
-
n^opf
-
OperatorOnKernel &ncross_x(const Kernel&)
-
nx^k
-
OperatorOnKernel &ncross_x(OperatorOnKernel&)
-
nx^opk
-
OperatorOnKernel &ncross_y(const Kernel&)
-
ny^k
-
OperatorOnKernel &ncross_y(OperatorOnKernel&)
-
ny^opk
-
OperatorOnUnknown &ncrosscurl(const Unknown &un)
-
OperatorOnKernel &ncrosscurl_x(const Kernel&)
-
nx^curl_x(k)
-
OperatorOnKernel &ncrosscurl_x(OperatorOnKernel&)
-
nx^curl_x(opk)
-
OperatorOnKernel &ncrosscurl_y(const Kernel&)
-
ny^curl_y(k)
-
OperatorOnKernel &ncrosscurl_y(OperatorOnKernel&)
-
ny^curl_y(opk)
-
OperatorOnUnknown &ncrossgrad(const Unknown &un)
-
OperatorOnFunction &ncrossncross(const Function&)
-
n^(n^f)
-
OperatorOnUnknown &ncrossncross(const Unknown &un)
-
OperatorOnFunction &ncrossncross(OperatorOnFunction&)
-
n^(n^opf)
-
OperatorOnKernel &ncrossncross_x(const Kernel&)
-
nx^nx^k
-
OperatorOnKernel &ncrossncross_x(OperatorOnKernel&)
-
nx^nx^opk
-
OperatorOnKernel &ncrossncross_y(const Kernel&)
-
ny^ny^k
-
OperatorOnKernel &ncrossncross_y(OperatorOnKernel&)
-
ny^ny^opk
-
OperatorOnUnknown &ncrossndot(const Unknown&)
-
OperatorOnFunction &ncrossndot(Function&)
-
(n^n)|f
-
OperatorOnFunction &ncrossndot(OperatorOnFunction&)
-
(n^n)|opf
-
OperatorOnFunction &ncrossntimes(const Function &f)
-
OperatorOnUnknown &ncrossntimes(const Unknown &un)
-
OperatorOnFunction &ncrossntimes(Function&)
-
(n^n)*f
-
OperatorOnFunction &ncrossntimes(OperatorOnFunction&)
-
(n^n)*opf
-
OperatorOnUnknown &ncrossrot(const Unknown &un)
-
OperatorOnKernel &ncrossrot_x(const Kernel&)
-
nx^curl_x(k)
-
OperatorOnKernel &ncrossrot_x(OperatorOnKernel&)
-
nx^curl_x(opk)
-
OperatorOnKernel &ncrossrot_y(const Kernel&)
-
ny^curl_y(k)
-
OperatorOnKernel &ncrossrot_y(OperatorOnKernel&)
-
ny^curl_y(opk)
-
OperatorOnUnknown &ndiv(const Unknown &un)
-
OperatorOnKernel &ndiv_x(const Kernel&)
-
nx*div_x(k)
-
OperatorOnKernel &ndiv_x(OperatorOnKernel&)
-
nx*div_x(opk)
-
OperatorOnKernel &ndiv_y(const Kernel&)
-
ny*div_y(k)
-
OperatorOnKernel &ndiv_y(OperatorOnKernel&)
-
ny*div_y(opk)
-
OperatorOnFunction &ndot(const Function&)
-
n|f
-
OperatorOnUnknown &ndot(const Unknown &un)
-
OperatorOnFunction &ndot(OperatorOnFunction&)
-
n|opf
-
OperatorOnKernel &ndot_x(const Kernel&)
-
nx|k
-
OperatorOnKernel &ndot_x(OperatorOnKernel&)
-
nx|opk
-
OperatorOnKernel &ndot_y(const Kernel&)
-
ny|k
-
OperatorOnKernel &ndot_y(OperatorOnKernel&)
-
ny|opk
-
OperatorOnUnknown &ndotgrad(const Unknown &un)
-
OperatorOnKernel &ndotgrad_x(const Kernel&)
-
nx|grad_x(k)
-
OperatorOnKernel &ndotgrad_x(OperatorOnKernel&)
-
nx|grad_x(opk)
-
OperatorOnKernel &ndotgrad_y(const Kernel&)
-
ny|grad_y(k)
-
OperatorOnKernel &ndotgrad_y(OperatorOnKernel&)
-
ny|grad_y(opk)
- template LargeMatrix< complex_t > * newSkyline (const LargeMatrix< complex_t > *mat_p)
- template LargeMatrix< real_t > * newSkyline (const LargeMatrix< real_t > *mat_p)
-
template<class M_>
M_ *newSkyline(const M_ *mat_p)
-
This function allocates a new matrix, equal to the input matrix but with a skyline storage.
Create a new matrix (especially a LargeMatrix) with a skyline storage.
The new matrix can then be factorized using one of the internal factorization algorithms available in XLiFE++, such as LDLt, LDL* or LU.
-
template<typename T>
real_t newton(T (*f)(const T&), T (*fp)(const T&), T &x0, number_t niter = 100, real_t tol = theTolerance)
-
void noEvenDegreeRule(int degree, const string_t &name, ShapeType sh)
-
warning message
-
std::pair<number_t, number_t> nonSeparatingEdge(const std::vector<Point> &p)
-
determines one edge of the polygon defined by its list of vertices that do not separate the polygon
determines an edge of a polygon so that the whole polygon is on the same side
-
inline real_t norm(const complex_t &v)
-
inline real_t norm(const real_t &v)
-
norm of scalars
-
template<typename T>
real_t norm(const std::vector<T> &v)
-
norm of vector
-
real_t norm(const TermVector &tv, number_t l = 2)
-
vector norm
-
real_t norm(const VectorEntry&, number_t l = 2)
-
norm of Vector entry (default l2)
-
real_t norm1(const SuTermVector&)
-
l1 vector SuTermVector norm
-
real_t norm1(const TermVector &vt)
-
l1 TermVector norm
-
real_t norm1(const VectorEntry&)
-
l1 vector VectorEntry norm
-
inline real_t norm2(const complex_t&)
-
template<typename T>
inline real_t norm2(const LargeMatrix<T> &A)
-
real_t norm2(const Matrix<complex_t> &m)
-
real_t norm2(const Matrix<real_t> &m)
-
specialization of norm2
-
real_t norm2(const Point&)
-
returns the square distance between 2 points
-
inline real_t norm2(const real_t&)
-
real_t norm2(const SuTermVector&)
-
l2 vector SuTermVector norm (quadratic norm)
-
inline real_t norm2(const TermMatrix &A)
-
real_t norm2(const TermVector &vt)
-
l2 TermVector norm (quadratic norm)
-
real_t norm2(const VectorEntry&)
-
l2 vector VectorEntry (quadratic norm)
-
inline Vector<real_t> normal_Piecewise(const Point &pt, Parameters &pars, DiffOpType d = _id)
-
extern parametrization call
-
real_t normalBoxMuller(real_t mu = 0., real_t sigma = 1.)
-
normal distribution (mu,sigma) using Box Muller method (using rand())
-
void normalDistribution(complex_t *mat, number_t n = 1, number_t m = 1)
-
compute a complex Gaussian matrix normal distribution (0,1) (using <random> if C11)
-
void normalDistribution(complex_t *mat, real_t mu, real_t sigma, number_t n = 1, number_t m = 1)
-
compute a complex Gaussian matrix normal distribution (mu,sigma) (using <random> if C11)
-
template<typename T>
std::vector<T> normalDistribution(number_t n, number_t m, real_t mu = 0., real_t sigma = 1.)
-
template<typename T>
std::vector<T> normalDistribution(number_t n, real_t mu = 0., real_t sigma = 1.)
-
void normalDistribution(real_t *mat, number_t n = 1, number_t m = 1)
-
compute a Gaussian matrix normal distribution (0,1) (using <random> if C11)
-
void normalDistribution(real_t *mat, real_t mu, real_t sigma, number_t n = 1, number_t m = 1)
-
compute a Gaussian matrix normal distribution (mu,sigma) (using <random> if C11)
-
real_t normalDistribution(real_t mu = 0., real_t sigma = 1., GaussianGenerator gg = _MarsagliaGenerator)
-
return a sample from normal distribution (mu,sigma) (using <random> if C11)
-
template<typename T>
void normalDistribution(std::vector<T> &mat, number_t n, number_t m, real_t mu = 0., real_t sigma = 1.)
-
template<typename T>
void normalDistribution(std::vector<T> &v, real_t mu = 0., real_t sigma = 1.)
-
void normalDistributionC(complex_t *mat, GaussianGenerator gg, number_t n = 1, number_t m = 1)
-
compute a complex Gaussian matrix normal distribution (0,1) (using rand())
-
void normalDistributionC(complex_t *mat, number_t n = 1, number_t m = 1)
-
compute a complex Gaussian matrix normal distribution (0,1) (using rand())
-
void normalDistributionC(complex_t *mat, real_t mu, real_t sigma, GaussianGenerator gg, number_t n = 1, number_t m = 1)
-
compute a complex Gaussian matrix normal distribution (mu,sigma) (using rand())
-
void normalDistributionC(complex_t *mat, real_t mu, real_t sigma, number_t n = 1, number_t m = 1)
-
compute a complex Gaussian matrix normal distribution (mu,sigma) (using rand())
-
void normalDistributionC(real_t *mat, GaussianGenerator gg, number_t n = 1, number_t m = 1)
-
compute a Gaussian matrix normal distribution (0,1) (using rand())
-
void normalDistributionC(real_t *mat, number_t n = 1, number_t m = 1)
-
compute a Gaussian matrix normal distribution (0,1) (using rand())
-
void normalDistributionC(real_t *mat, real_t mu, real_t sigma, GaussianGenerator gg, number_t n = 1, number_t m = 1)
-
compute a Gaussian matrix normal distribution (mu,sigma) (using rand())
-
void normalDistributionC(real_t *mat, real_t mu, real_t sigma, number_t n = 1, number_t m = 1)
-
compute a Gaussian matrix normal distribution (mu,sigma) (using rand())
-
real_t normalDistributionC(real_t mu = 0., real_t sigma = 1., GaussianGenerator gg = _MarsagliaGenerator)
-
return a sample from normal distribution (mu,sigma) (using rand())
-
template<typename T>
MatrixEigenDense<T> normalizeEigenVectors(const MatrixEigenDense<T> &eigVecs)
-
double normalMarsaglia(real_t mu = 0., real_t sigma = 1.)
-
normal distribution (mu,sigma) using Marsaglia method (using rand())
-
TermVector normalsOn(GeomDomain &dom, const Unknown &u)
-
compute normals of a side domain using interpolation given by an unknown
-
inline Vector<real_t> &normalVectorFromParameters(const Parameters &pa)
-
extract normal vector from Parameters
-
inline real_t norminfty(const complex_t &z)
-
template<typename T>
inline real_t norminfty(const LargeMatrix<T> &A)
-
real_t norminfty(const Matrix<complex_t> &m)
-
real_t norminfty(const Matrix<real_t> &m)
-
specialization of infinite norm
-
inline real_t norminfty(const real_t &r)
-
real_t norminfty(const SuTermVector&)
-
l_infinite SuTermVector norm (sup norm)
-
inline real_t norminfty(const TermMatrix &A)
-
real_t norminfty(const TermVector &vt)
-
l_infinite TermVector norm (sup norm)
-
real_t norminfty(const VectorEntry&)
-
l_infinite VectorEntry (sup norm)
-
OperatorOnFunction &ntimes(const Function&)
-
n*f
-
OperatorOnFunction &ntimes(OperatorOnFunction&)
-
n*opf
-
OperatorOnKernel &ntimes_x(const Kernel&)
-
nx*k
-
OperatorOnKernel &ntimes_x(OperatorOnKernel &opk)
-
nx*opk
-
OperatorOnKernel &ntimes_y(const Kernel&)
-
ny*k
-
OperatorOnKernel &ntimes_y(OperatorOnKernel &opk)
-
ny*opk
-
OperatorOnUnknown &ntimesndot(const Unknown &un)
-
template<class ST_>
const vector<number_t> numberingConversion(const number_t order)
-
The following function returns a vector giving the correspondence between the two numberings of the points of the Lagrange mesh of order k over the reference element (triangle or quadrangle).
The following function returns a vector giving the correspondence between the two numberings of the points of the Lagrange mesh of order k over the reference element (tetrahedron or hexahedron).
Provided V is the returned vector, if i denotes the rank of a point in XLiFE++, then the corresponding point is V[i] in class subdivision::TriangleMesh or subdivision::QuadrangleMesh, referred to as xxxMesh in the following.
Provided V is the returned vector, if i denotes the rank of a point in XLiFE++ then the corresponding point is V[i] in class subdivision::TetrahedronMesh or subdivision::HexahedronMesh, referred to as xxxMesh in the following.
-
number_t numberOfCols(const complex_t &v)
-
number_t numberOfCols(const real_t &v)
-
number_t numberOfRows(const complex_t &v)
-
number_t numberOfRows(const real_t &v)
-
number_t numberOfThreads(int n)
-
manage the number of threads in OpenMP if n==0 set to the maximum of number of threads if n >0 set the number of threads to n if n==-1 return the number of threads (default) if omp is not available, always return 1
if omp is available, set or get the number of threads (default)
-
OperatorOnUnknown &nx(const Unknown &un)
-
OperatorOnKernel &nxcrossny_cross(const Kernel&)
-
(nx^ny)^k
-
OperatorOnKernel &nxcrossny_cross(OperatorOnKernel&)
-
(nx^ny)^opk
- Parameters:
-
opk – (nx.ny).opk
-
OperatorOnKernel &nxcrossny_dot(const Kernel&)
-
(nx^ny).k
-
OperatorOnKernel &nxcrossny_dot(OperatorOnKernel&)
-
(nx^ny).opk
- Parameters:
-
opk – (nx.ny).opk
-
OperatorOnKernel &nxdotny_times(const Kernel&)
-
(nx.ny)*k
-
OperatorOnKernel &nxdotny_times(OperatorOnKernel&)
-
(nx.ny)*opk
- Parameters:
-
opk – (nx.ny)*opk
-
OperatorOnKernel &nycrossnx_cross(const Kernel&)
-
(ny^ny)^k
-
OperatorOnKernel &nycrossnx_cross(OperatorOnKernel&)
-
(ny^nx)^opk
- Parameters:
-
opk – (nx.ny).opk
-
OperatorOnKernel &nycrossnx_dot(const Kernel&)
-
(ny^nx).k
-
OperatorOnKernel &nycrossnx_dot(OperatorOnKernel&)
-
(ny^nx).opk
- Parameters:
-
opk – (nx.ny).opk
-
template<typename T>
std::pair<Vector<real_t>, Vector<T>> ode45(T &(*f)(real_t, const T &y, T &fty), real_t a, real_t b, real_t dt, const T &y0, number_t nbt, real_t mins, real_t maxs, real_t prec = 1.E-6)
-
template<typename T>
std::pair<Vector<real_t>, Vector<T>> ode45(T &(*f)(real_t, const T &y, T &fty), real_t a, real_t b, real_t dt, const T &y0, real_t prec = 1.E-6)
-
EssentialCondition on(GeomDomain&, const EssentialCondition&)
-
set domain to a Essential condition
-
string_t oneOfSideNames(const std::vector<string_t> &sn, int i)
-
string_t oneOfSideNames(const string_t &sn, int i)
-
string_t oneOfSideNamesIfVector(const std::vector<string_t> &sn, int i)
-
string_t oneOfSideNamesIfVector(const string_t &sn, int i)
-
inline void openCrack(Geometry &g1, Geometry &g2, Geometry &g3, Geometry &g4, Geometry &g5, Geometry &g6, Geometry &g7, string_t domNameToOpen)
-
user shortcut to crack 7 geometries
-
inline void openCrack(Geometry &g1, Geometry &g2, Geometry &g3, Geometry &g4, Geometry &g5, Geometry &g6, string_t domNameToOpen)
-
user shortcut to crack 6 geometries
-
inline void openCrack(Geometry &g1, Geometry &g2, Geometry &g3, Geometry &g4, Geometry &g5, string_t domNameToOpen)
-
user shortcut to crack 5 geometries
-
inline void openCrack(Geometry &g1, Geometry &g2, Geometry &g3, Geometry &g4, string_t domNameToOpen)
-
user shortcut to crack 4 geometries
-
inline void openCrack(Geometry &g1, Geometry &g2, Geometry &g3, string_t domNameToOpen)
-
user shortcut to crack 3 geometries
-
inline void openCrack(Geometry &g1, Geometry &g2, string_t domNameToOpen)
-
user shortcut to crack 2 geometries
-
inline void openCrack(Geometry &g1, string_t domNameToOpen)
-
user shortcut to crack one geometry
-
inline SymbolicFunction &operator!(const SymbolicFunction &f)
-
inline SymbolicFunction &operator!=(const complex_t &c, const SymbolicFunction &f)
-
inline bool operator!=(const DifferentialOperator &d1, const DifferentialOperator &d2)
-
bool operator!=(const DofComponent&, const DofComponent&)
-
diffference
-
template<typename K>
bool operator!=(const Matrix<K> &a, const Matrix<K> &b)
-
matrix comparison (element by element)
-
bool operator!=(const OperatorOnFunction&, const OperatorOnFunction&)
-
different operator on function
-
bool operator!=(const OperatorOnKernel&, const OperatorOnKernel&)
-
different operator on kernel
-
bool operator!=(const OperatorOnUnknown&, const OperatorOnUnknown&)
-
compare OperatorOnUnknown (same unknowns, same diff operators, same functions …)
-
inline SymbolicFunction &operator!=(const real_t &r, const SymbolicFunction &f)
-
template<typename T, template<class> class OP, class CP, template<class> class KP, template<class> class SP, template<class> class CNP>
inline bool operator!=(const SmartPtr<T, OP, CP, KP, SP, CNP> &lhs, SmartPointerNullType rhs)
-
template<typename T, template<class> class OP, class CP, template<class> class KP, template<class> class SP, template<class> class CNP, typename U>
inline bool operator!=(const SmartPtr<T, OP, CP, KP, SP, CNP> &lhs, U *rhs)
-
template<typename K>
bool operator!=(const SparseMatrix<K> &a, const SparseMatrix<K> &b)
-
matrix comparison (element by element)
-
inline SymbolicFunction &operator!=(const SymbolicFunction &f, const complex_t &c)
-
inline SymbolicFunction &operator!=(const SymbolicFunction &f, const real_t &r)
-
inline SymbolicFunction &operator!=(const SymbolicFunction &f1, const SymbolicFunction &f2)
-
template<typename T, template<class> class OP, class CP, template<class> class KP, template<class> class SP, template<class> class CNP>
inline bool operator!=(SmartPointerNullType lhs, const SmartPtr<T, OP, CP, KP, SP, CNP> &rhs)
-
template<typename T, template<class> class OP, class CP, template<class> class KP, template<class> class SP, template<class> class CNP, typename U>
inline bool operator!=(U *lhs, const SmartPtr<T, OP, CP, KP, SP, CNP> &rhs)
-
template<typename T>
inline ComparisonFunction<T> operator!=(VarComparison, const T &a)
-
OperatorOnUnknown &operator%(const complex_t&, const Unknown&)
-
cu
-
OperatorOnUnknown &operator%(const complex_t &val, OperatorOnUnknown &opu)
-
OperatorOnUnknown &operator%(const Function&, const Unknown&)
-
Fu.
-
OperatorOnUnknown &operator%(const Function&, OperatorOnUnknown&)
-
contracted product syntax FOp(u)
-
KernelOperatorOnUnknowns operator%(const Kernel&, const OperatorOnUnknown&)
-
ker % opv
-
KernelOperatorOnUnknowns operator%(const Kernel&, const Unknown&)
-
ker % v
-
KernelOperatorOnTermVector operator%(const Kernel &ker, const TermVector &tv)
-
ker % tv
-
KernelOperatorOnTermVectorAndUnknown operator%(const KernelOperatorOnTermVector &koptv, const OperatorOnUnknown &opv)
-
KernelOperatorOnTermVectorAndUnknown operator%(const KernelOperatorOnTermVector &koptv, const Unknown &v)
-
KernelOperatorOnTermVectorAndUnknown operator%(const KernelOperatorOnTermVectorAndUnknown&, const OperatorOnUnknown&)
-
KernelOperatorOnUnknowns operator%(const KernelOperatorOnUnknowns&, const OperatorOnUnknown&)
-
opker % opv
-
KernelOperatorOnUnknowns operator%(const KernelOperatorOnUnknowns&, const Unknown&)
-
opker % v
-
LcOperatorOnUnknowns operator%(const LcOperatorOnUnknown &lcopu, const LcOperatorOnUnknown &lcopv)
-
LcOperatorOnUnknowns operator%(const LcOperatorOnUnknown &lcopu, const OperatorOnUnknown &opv)
-
LcOperatorOnUnknowns operator%(const LcOperatorOnUnknown &lcopu, const Unknown &v)
-
template<typename T>
OperatorOnUnknown &operator%(const Matrix<T> &val, const Unknown &un)
-
Matrixu.
-
template<typename T>
OperatorOnUnknown &operator%(const Matrix<T> &val, OperatorOnUnknown &opu)
-
OperatorOnUnknown &operator%(const OperatorOnFunction&, const Unknown&)
-
op(F)u
-
OperatorOnUnknown &operator%(const OperatorOnFunction&, OperatorOnUnknown&)
-
contracted product syntax op(F)FOp(u)
-
KernelOperatorOnUnknowns operator%(const OperatorOnKernel&, const OperatorOnUnknown&)
-
opker % opv
-
KernelOperatorOnTermVector operator%(const OperatorOnKernel &opk, const TermVector &tv)
-
opker % tv
-
KernelOperatorOnUnknowns operator%(const OperatorOnUnknown&, const Kernel&)
-
opu % ker
-
KernelOperatorOnTermVectorAndUnknown operator%(const OperatorOnUnknown&, const KernelOperatorOnTermVectorAndUnknown&)
-
KernelOperatorOnUnknowns operator%(const OperatorOnUnknown&, const KernelOperatorOnUnknowns&)
-
opu % opker
-
KernelOperatorOnUnknowns operator%(const OperatorOnUnknown&, const OperatorOnKernel&)
-
opu % opker
-
LcOperatorOnUnknowns operator%(const OperatorOnUnknown &opu, const LcOperatorOnUnknown &lcopv)
-
KernelOperatorOnTermVectorAndUnknown operator%(const OperatorOnUnknown &opv, const KernelOperatorOnTermVector &koptv)
-
OperatorOnUnknown &operator%(const real_t&, const Unknown&)
-
ru
-
OperatorOnUnknown &operator%(const real_t &val, OperatorOnUnknown &opu)
-
KernelOperatorOnTermVector operator%(const TermVector &tv, const Kernel &ker)
-
tv % ker
-
KernelOperatorOnTermVector operator%(const TermVector &tv, const OperatorOnKernel &opker)
-
tv % opker
-
OperatorOnUnknown &operator%(const TermVector &tv, const TestFunction &un)
-
tvu
-
OperatorOnUnknown &operator%(const TermVector &tv, const Unknown &un)
-
tvu
-
OperatorOnUnknown &operator%(const TermVector &tv, OperatorOnUnknown &opu)
-
tvopu
-
OperatorOnUnknown &operator%(const TestFunction &un, const TermVector &tv)
-
utv
-
OperatorOnUnknown &operator%(const Unknown&, const complex_t&)
-
uc
-
OperatorOnUnknown &operator%(const Unknown&, const Function&)
-
uF
-
KernelOperatorOnUnknowns operator%(const Unknown&, const Kernel&)
-
u % ker
-
KernelOperatorOnUnknowns operator%(const Unknown&, const KernelOperatorOnUnknowns&)
-
u % opker
-
OperatorOnUnknown &operator%(const Unknown&, const OperatorOnFunction&)
-
uop(F)
-
OperatorOnUnknown &operator%(const Unknown&, const real_t&)
-
ur
-
OperatorOnUnknown &operator%(const Unknown&, const Value&)
-
uval
-
LcOperatorOnUnknowns operator%(const Unknown &u, const LcOperatorOnUnknown &lcopv)
-
template<typename T>
OperatorOnUnknown &operator%(const Unknown &un, const Matrix<T> &val)
-
uMatrix
-
OperatorOnUnknown &operator%(const Unknown &un, const TermVector &tv)
-
utv
-
template<typename T>
OperatorOnUnknown &operator%(const Unknown &un, const Vector<T> &val)
-
uVector
- template<typename T> KernelOperatorOnUnknowns operator% (const Unknown &un, T(fun)(const Point &, const Point &, Parameters &))
-
u % function(Point,Parameters)
- template<typename T> OperatorOnUnknown & operator% (const Unknown &un, T(fun)(const Point &, Parameters &))
-
u % function(Point,Parameters)
- template<typename T> KernelOperatorOnUnknowns operator% (const Unknown &un, T(fun)(const Vector< Point > &, const Vector< Point > &, Parameters &))
-
u % function(Vector<Point>,Parameters)
- template<typename T> OperatorOnUnknown & operator% (const Unknown &un, T(fun)(const Vector< Point > &, Parameters &))
-
u % function(Vector<Point>,Parameters)
-
KernelOperatorOnTermVectorAndUnknown operator%(const Unknown &v, const KernelOperatorOnTermVector &koptv)
-
OperatorOnUnknown &operator%(const Value&, const Unknown&)
-
valu
-
OperatorOnUnknown &operator%(const Value&, OperatorOnUnknown&)
-
contracted product syntax VOp(u)
-
template<typename T>
OperatorOnUnknown &operator%(const Vector<T> &val, const Unknown &un)
-
Vectoru.
-
template<typename T>
OperatorOnUnknown &operator%(const Vector<T> &val, OperatorOnUnknown &opu)
-
OperatorOnUnknown &operator%(OperatorOnUnknown&, const Function&)
-
contracted product syntax Op(u)F
-
OperatorOnUnknown &operator%(OperatorOnUnknown&, const OperatorOnFunction&)
-
contracted product syntax Op(u)op(F)
-
OperatorOnUnknown &operator%(OperatorOnUnknown&, const Value&)
-
contracted product syntax Op(u)V
-
OperatorOnUnknowns operator%(OperatorOnUnknown&, OperatorOnUnknown&)
-
opu % opv
-
OperatorOnUnknowns operator%(OperatorOnUnknown&, Unknown&)
-
opu % v
-
OperatorOnUnknown &operator%(OperatorOnUnknown &opu, const complex_t &val)
-
template<typename T>
OperatorOnUnknown &operator%(OperatorOnUnknown &opu, const Matrix<T> &val)
-
OperatorOnUnknown &operator%(OperatorOnUnknown &opu, const real_t &val)
-
OperatorOnUnknown &operator%(OperatorOnUnknown &opu, const TermVector &tv)
-
oputv
-
template<typename T>
OperatorOnUnknown &operator%(OperatorOnUnknown &opu, const Vector<T> &val)
- template<typename T> OperatorOnUnknown & operator% (OperatorOnUnknown &opu, T(fun)(const Point &, Parameters &))
-
opu % function(Point,Parameters)
- template<typename T> OperatorOnUnknown & operator% (OperatorOnUnknown &opu, T(fun)(const Vector< Point > &, Parameters &))
-
opu % function(Vector<Point>,Parameters)
- template<typename T> KernelOperatorOnUnknowns operator% (T(fun)(const Point &, const Point &, Parameters &), const Unknown &un)
-
function(Point,Parameters) % u
- template<typename T> OperatorOnUnknown & operator% (T(fun)(const Point &, Parameters &), const Unknown &un)
-
function(Point,Parameters) % u
- template<typename T> OperatorOnUnknown & operator% (T(fun)(const Point &, Parameters &), OperatorOnUnknown &opu)
-
function(Point,Parameters) % opu
- template<typename T> KernelOperatorOnUnknowns operator% (T(fun)(const Vector< Point > &, const Vector< Point > &, Parameters &), const Unknown &un)
-
function(Vector<Point>,Parameters) % u
- template<typename T> OperatorOnUnknown & operator% (T(fun)(const Vector< Point > &, Parameters &), const Unknown &un)
-
function(Vector<Point>,Parameters) % u
- template<typename T> OperatorOnUnknown & operator% (T(fun)(const Vector< Point > &, Parameters &), OperatorOnUnknown &opu)
-
function(Vector<Point>,Parameters) % opu
-
OperatorOnUnknowns operator%(Unknown&, OperatorOnUnknown&)
-
u % opv
-
OperatorOnUnknowns operator%(Unknown&, Unknown&)
-
u % v
-
EssentialConditions operator&(const EssentialCondition&, const EssentialCondition&)
-
bcs = ec & ec
-
EssentialConditions operator&(const EssentialCondition&, const EssentialConditions&)
-
bcs = ec & ecs
-
EssentialConditions operator&(const EssentialConditions&, const EssentialCondition&)
-
bcs = ecs & ec
-
EssentialConditions operator&(const EssentialConditions&, const EssentialConditions&)
-
bcs = ecs & ecs
-
template<typename T>
ComparisonFunction<T> operator&&(const ComparisonFunction<T> &cof1, const ComparisonFunction<T> &cof2)
-
inline SymbolicFunction &operator&&(const SymbolicFunction &f1, const SymbolicFunction &f2)
-
BasicBilinearForm &operator*(const BasicBilinearForm&, const BasicBilinearForm&)
-
compose two basic bilinear forms
-
BilinearForm operator*(const BilinearForm&, const BilinearForm&)
-
compose two bilinear forms, have to be basic linear forms
-
BilinearForm operator*(const BilinearForm&, const complex_t&)
-
product(right) by a complex scalar
-
BilinearForm operator*(const BilinearForm&, const int&)
-
product(right) by an integer scalar
-
BilinearForm operator*(const BilinearForm&, const int_t&)
-
product(right) by an integer scalar
-
BilinearForm operator*(const BilinearForm&, const number_t&)
-
product(right) by an integer scalar
-
BilinearForm operator*(const BilinearForm&, const real_t&)
-
product(right) by a real scalar
-
BilinearForm operator*(const complex_t&, const BilinearForm&)
-
product(left) by a complex scalar
-
LinearForm operator*(const complex_t&, const LinearForm&)
-
product(left) by a scalar
-
SuBilinearForm operator*(const complex_t&, const SuBilinearForm&)
-
multiply(left) by a scalar
-
OperatorOnUnknown &operator*(const complex_t&, const Unknown&)
-
c*u
-
Vector<Vector<complex_t>> operator*(const complex_t&, const Vector<Vector<complex_t>>&)
-
multiply complex scalar by complex vector “x * A”
-
LcKernelOperatorOnUnknowns operator*(const complex_t &a, const LcKernelOperatorOnUnknowns &lc)
-
LcOperatorOnUnknown operator*(const complex_t &a, const LcOperatorOnUnknown &lc)
-
LcOperatorOnUnknowns operator*(const complex_t &a, const LcOperatorOnUnknowns &lc)
-
SuLinearForm operator*(const complex_t &c, const SuLinearForm &sulf)
-
product(left) by a scalar
-
inline SymbolicFunction &operator*(const complex_t &c, const SymbolicFunction &f)
-
SymbolicTermMatrix &operator*(const complex_t &c, SymbolicTermMatrix &S)
-
OperatorOnFunction &operator*(const complex_t &v, UnitaryVector n)
-
v*n same as f_v*n
-
OperatorOnUnknown &operator*(const complex_t &val, OperatorOnUnknown &opu)
-
Matrix<complex_t> operator*(const complex_t &x, const Matrix<real_t> &rA)
-
multiply real matrix by a complex value
complex x * real matrix A
-
Vector<complex_t> operator*(const complex_t &x, const Vector<real_t> &rA)
-
multiply real vector by complex scalar
multiply real vector by complex scalar “x * A”
-
complex_t operator*(const complex_t &z, const int i)
-
complex_t operator*(const complex_t &z, const int_t i)
-
complex_t operator*(const complex_t &z, const number_t n)
-
LargeMatrix<complex_t> operator*(const complex_t v, const LargeMatrix<real_t> &mat)
-
OperatorOnFunction &operator*(const Extension &e, const Function &f)
-
extension of Function
-
OperatorOnKernel &operator*(const Extension &e, const Kernel &k)
-
extension of Kernel
-
OperatorOnFunction &operator*(const Extension &e, OperatorOnFunction &opf)
-
extension of OperatorOnFunction
-
OperatorOnKernel &operator*(const Extension &e, OperatorOnKernel &opk)
-
extension of OperatorOnKernel
-
OperatorOnUnknown &operator*(const Function&, const Unknown&)
-
F*u.
-
OperatorOnUnknown &operator*(const Function&, OperatorOnUnknown&)
-
product syntax F*Op(u)
-
OperatorOnFunction &operator*(const Function&, UnitaryVector)
-
f*n same as timesn(f)/timesncrossn(f)
-
template<typename T, typename I>
Vector<T> operator*(const HMatrix<T, I> &h, const Vector<T> &x)
-
Hmatrix * Vector.
-
BilinearForm operator*(const int&, const BilinearForm&)
-
product(left) by an integer scalar
-
LinearForm operator*(const int&, const LinearForm&)
-
product(left) by a scalar
-
complex_t operator*(const int i, const complex_t &z)
-
BilinearForm operator*(const int_t&, const BilinearForm&)
-
product(left) by an integer scalar
-
LinearForm operator*(const int_t&, const LinearForm&)
-
product(left) by a scalar
-
complex_t operator*(const int_t i, const complex_t &z)
-
template<typename K>
PolynomialT<K> operator*(const K &k, const MonomialT<K> &m)
-
template<typename K>
PolynomialT<K> operator*(const K &k, const PolynomialT<K> &p)
-
template<typename K>
Vector<K> operator*(const K &x, const Vector<K> &a)
-
multiply vector by a scalar “x * A”
-
template<typename K>
Vector<Matrix<K>> operator*(const K &x, const Vector<Matrix<K>> &a)
-
scalar x * vector of matrix
-
KernelOperatorOnUnknowns operator*(const Kernel&, const OperatorOnUnknown&)
-
ker * opv
-
KernelOperatorOnUnknowns operator*(const Kernel&, const Unknown&)
-
ker * v
-
OperatorOnKernel &operator*(const Kernel&, UnitaryVector)
-
ker*n same as ntimes(ker)
-
KernelOperatorOnTermVector operator*(const Kernel &ker, const TermVector &tv)
-
ker * tv
-
KernelOperatorOnTermVectorAndUnknown operator*(const KernelOperatorOnTermVector &koptv, const OperatorOnUnknown &opv)
-
KernelOperatorOnTermVectorAndUnknown operator*(const KernelOperatorOnTermVector &koptv, const Unknown &v)
-
KernelOperatorOnTermVectorAndUnknown operator*(const KernelOperatorOnTermVectorAndUnknown&, const OperatorOnUnknown&)
-
KernelOperatorOnUnknowns operator*(const KernelOperatorOnUnknowns&, const OperatorOnUnknown&)
-
opker * opv
-
KernelOperatorOnUnknowns operator*(const KernelOperatorOnUnknowns&, const Unknown&)
-
opker * v
-
template<typename K, typename KK>
VectorEigenDense<K> operator*(const KK &k, const VectorEigenDense<K> &vec)
-
template<typename K, typename KK>
Matrix<K> operator*(const KK &x, const Matrix<K> &a)
-
scalar x * matrix A
-
template<typename K, typename KK>
SparseMatrix<K> operator*(const KK &x, const SparseMatrix<K> &a)
-
scalar x * matrix A
-
LargeMatrix<complex_t> operator*(const LargeMatrix<complex_t> &mA, const LargeMatrix<real_t> &mB)
-
LargeMatrix<complex_t> operator*(const LargeMatrix<complex_t> &mat, const real_t v)
-
std::vector<complex_t> operator*(const LargeMatrix<complex_t> &mat, const std::vector<real_t> &vec)
-
LargeMatrix<Matrix<complex_t>> operator*(const LargeMatrix<Matrix<complex_t>> &mA, const LargeMatrix<Matrix<real_t>> &mB)
-
std::vector<Vector<complex_t>> operator*(const LargeMatrix<Matrix<complex_t>> &mat, const std::vector<Vector<real_t>> &vec)
-
LargeMatrix<Matrix<complex_t>> operator*(const LargeMatrix<Matrix<real_t>> &mA, const LargeMatrix<Matrix<complex_t>> &mB)
-
std::vector<Vector<complex_t>> operator*(const LargeMatrix<Matrix<real_t>> &mat, const std::vector<Vector<complex_t>> &vec)
-
template<typename T>
std::vector<Vector<T>> operator*(const LargeMatrix<Matrix<T>> &mat, const std::vector<Vector<T>> &vec)
-
LargeMatrix<complex_t> operator*(const LargeMatrix<real_t> &mA, const LargeMatrix<complex_t> &mB)
-
LargeMatrix<complex_t> operator*(const LargeMatrix<real_t> &mat, const complex_t v)
-
std::vector<complex_t> operator*(const LargeMatrix<real_t> &mat, const std::vector<complex_t> &vec)
-
template<typename T>
LargeMatrix<T> operator*(const LargeMatrix<T> &mA, const LargeMatrix<T> &mB)
-
template<typename T>
std::vector<T> operator*(const LargeMatrix<T> &mat, const std::vector<T> &vec)
-
template<typename T>
LargeMatrix<T> operator*(const LargeMatrix<T> &mat, const T v)
-
Multiple a largeMatrix with a scalar.
-
LcKernelOperatorOnUnknowns operator*(const LcKernelOperatorOnUnknowns &lc, const complex_t &a)
-
LcKernelOperatorOnUnknowns operator*(const LcKernelOperatorOnUnknowns &lc, const real_t &a)
-
LcOperatorOnUnknown operator*(const LcOperatorOnUnknown &lc, const complex_t &a)
-
LcOperatorOnUnknown operator*(const LcOperatorOnUnknown &lc, const real_t &a)
-
LcOperatorOnUnknowns operator*(const LcOperatorOnUnknown &lcopu, const LcOperatorOnUnknown &lcopv)
-
LcOperatorOnUnknowns operator*(const LcOperatorOnUnknown &lcopu, const OperatorOnUnknown &opv)
-
LcOperatorOnUnknowns operator*(const LcOperatorOnUnknown &lcopu, const Unknown &v)
-
LcOperatorOnUnknowns operator*(const LcOperatorOnUnknowns &lc, const complex_t &a)
-
LcOperatorOnUnknowns operator*(const LcOperatorOnUnknowns &lc, const real_t &a)
-
TermVector operator*(const LcTerm<TermMatrix>&, const TermVector&)
-
LcTerm * TermVector.
-
LinearForm operator*(const LinearForm&, const complex_t&)
-
product(right) by a scalar
-
LinearForm operator*(const LinearForm&, const int&)
-
product(right) by a scalar
-
LinearForm operator*(const LinearForm&, const int_t&)
-
product(right) by a scalar
-
LinearForm operator*(const LinearForm&, const number_t&)
-
product(right) by a scalar
-
LinearForm operator*(const LinearForm&, const real_t&)
-
product(right) by a scalar
-
template<typename T>
LowRankMatrix<T> operator*(const LowRankMatrix<T> &L1, const T &s)
-
template<typename T>
std::vector<T> operator*(const LowRankMatrix<T> &lrm, const std::vector<T> &x)
-
Matrix<complex_t> operator*(const Matrix<complex_t> &cA, const Matrix<real_t> &rB)
-
multiply complex matrix by a real matrix
complex matrix A x real matrix B
-
Vector<complex_t> operator*(const Matrix<complex_t> &cA, const Vector<real_t> &rV)
-
complex matrix * real vector
complex matrix x real vector
-
OperatorOnFunction &operator*(const Matrix<complex_t> &v, UnitaryVector n)
-
v*n same as f_v*n
-
template<typename K, typename V>
Vector<K> operator*(const Matrix<K> &m, const Vector<V> &v)
-
matrix x vector (template)
-
template<typename K>
PolynomialsBasisT<K> operator*(const Matrix<K> &mat, const PolynomialsBasisT<K> &ps)
-
template<typename K>
std::vector<PolynomialT<K>> operator*(const Matrix<K> &mat, const std::vector<PolynomialT<K>> &ps)
-
matrix * [p1,p2, …]
-
Matrix<complex_t> operator*(const Matrix<real_t> &rA, const complex_t &x)
-
multiply real matrix by a complex value
real matrix A * complex x
-
Matrix<complex_t> operator*(const Matrix<real_t> &rA, const Matrix<complex_t> &cB)
-
multiply real matrix by a complex matrix
real matrix A x complex matrix B
-
Vector<complex_t> operator*(const Matrix<real_t> &rA, const Vector<complex_t> &cV)
-
real matrix * complex vector
real matrix x complex vector
-
OperatorOnFunction &operator*(const Matrix<real_t> &v, UnitaryVector n)
-
v*n same as f_v*n
-
template<typename T>
OperatorOnUnknown &operator*(const Matrix<T> &val, const Unknown &un)
-
Matrix*u.
-
template<typename T>
OperatorOnUnknown &operator*(const Matrix<T> &val, OperatorOnUnknown &opu)
-
MatrixEntry operator*(const MatrixEntry&, const MatrixEntry&)
-
product of MatrixEntry
-
VectorEntry operator*(const MatrixEntry &mat, const VectorEntry &vec)
-
matrix * vector (consistent structure)
matrix * vector
-
template<typename K>
PolynomialT<K> operator*(const MonomialT<K> &m, const K &k)
-
template<typename K>
PolynomialT<K> operator*(const MonomialT<K> &m, const PolynomialT<K> &p)
-
BilinearForm operator*(const number_t&, const BilinearForm&)
-
product(left) by an integer scalar
-
LinearForm operator*(const number_t&, const LinearForm&)
-
product(left) by a scalar
-
complex_t operator*(const number_t n, const complex_t &z)
-
OperatorOnUnknown &operator*(const OperatorOnFunction&, const Unknown&)
-
op(F)*u
-
OperatorOnUnknown &operator*(const OperatorOnFunction&, OperatorOnUnknown&)
-
product syntax op(F)*Op(u)
-
KernelOperatorOnUnknowns operator*(const OperatorOnKernel&, const OperatorOnUnknown&)
-
opker * opv
-
KernelOperatorOnTermVector operator*(const OperatorOnKernel &opk, const TermVector &tv)
-
opker * tv
-
KernelOperatorOnUnknowns operator*(const OperatorOnUnknown&, const Kernel&)
-
opu * ker
-
KernelOperatorOnTermVectorAndUnknown operator*(const OperatorOnUnknown&, const KernelOperatorOnTermVectorAndUnknown&)
-
KernelOperatorOnUnknowns operator*(const OperatorOnUnknown&, const KernelOperatorOnUnknowns&)
-
opu * opker
-
KernelOperatorOnUnknowns operator*(const OperatorOnUnknown&, const OperatorOnKernel&)
-
opu * opker
-
LcOperatorOnUnknowns operator*(const OperatorOnUnknown &opu, const LcOperatorOnUnknown &lcopv)
-
KernelOperatorOnTermVectorAndUnknown operator*(const OperatorOnUnknown &opv, const KernelOperatorOnTermVector &koptv)
-
template<typename K>
PolynomialBasisT<K> operator*(const PolynomialBasisT<K> &p, const PolynomialBasisT<K> &q)
-
template<typename K>
PolynomialsBasisT<K> operator*(const PolynomialBasisT<K> &pb, const std::vector<MonomialT<K>> &vp)
-
template<typename K>
PolynomialT<K> operator*(const PolynomialT<K> &p, const K &k)
-
template<typename K>
PolynomialT<K> operator*(const PolynomialT<K> &p, const MonomialT<K> &m)
-
template<typename K>
PolynomialT<K> operator*(const PolynomialT<K> &p1, const PolynomialT<K> &p2)
-
TermVector operator*(const Projector &P, const TermVector &X)
-
projection of a TermVector using *
-
BilinearForm operator*(const real_t&, const BilinearForm&)
-
product(left) by a real scalar
-
LinearForm operator*(const real_t&, const LinearForm&)
-
product(left) by a scalar
-
OperatorOnUnknown &operator*(const real_t&, const Unknown&)
-
r*u
-
LcKernelOperatorOnUnknowns operator*(const real_t &a, const LcKernelOperatorOnUnknowns &lc)
-
LcOperatorOnUnknown operator*(const real_t &a, const LcOperatorOnUnknown &lc)
-
LcOperatorOnUnknowns operator*(const real_t &a, const LcOperatorOnUnknowns &lc)
-
inline SymbolicFunction &operator*(const real_t &r, const SymbolicFunction &f)
-
OperatorOnFunction &operator*(const real_t &v, UnitaryVector n)
-
v*n same as f_v*n
-
OperatorOnUnknown &operator*(const real_t &val, OperatorOnUnknown &opu)
-
Vector<complex_t> operator*(const real_t &x, const Vector<complex_t> &cA)
-
multiply real vector by complex scalar
-
inline Vector<Matrix<complex_t>> operator*(const real_t &x, const Vector<Matrix<complex_t>> &a)
-
scalar x * vector of matrix
-
template<typename T>
inline Vector<Vector<T>> operator*(const real_t &x, const Vector<Vector<T>> &A)
-
multiply vector of vector<T> by a real “x * A”
-
LargeMatrix<complex_t> operator*(const real_t v, const LargeMatrix<complex_t> &mat)
-
template<typename K, typename KK>
SparseMatrix<K> operator*(const SparseMatrix<K> &a, const KK &x)
-
matrix A * scalar x
-
template<typename K, typename V>
Vector<K> operator*(const SparseMatrix<K> &m, const std::vector<V> &v)
-
matrix x vector (template)
-
std::vector<complex_t> operator*(const std::vector<complex_t> &vec, const LargeMatrix<real_t> &mat)
-
std::vector<complex_t> operator*(const std::vector<real_t> &vec, const LargeMatrix<complex_t> &mat)
-
template<typename T>
std::vector<T> operator*(const std::vector<T> &vec, const LargeMatrix<T> &mat)
-
template<typename T>
std::vector<T> operator*(const std::vector<T> &x, const LowRankMatrix<T> &lrm)
-
template<typename K, typename V>
Vector<K> operator*(const std::vector<V> &v, const SparseMatrix<K> &m)
-
vector x matrix (template)
-
std::vector<Vector<complex_t>> operator*(const std::vector<Vector<complex_t>> &vec, const LargeMatrix<Matrix<real_t>> &mat)
-
std::vector<Vector<complex_t>> operator*(const std::vector<Vector<real_t>> &vec, const LargeMatrix<Matrix<complex_t>> &mat)
-
template<typename T>
std::vector<Vector<T>> operator*(const std::vector<Vector<T>> &vec, const LargeMatrix<Matrix<T>> &mat)
-
SuBilinearForm operator*(const SuBilinearForm&, const complex_t&)
-
multiply(right) by a scalar
-
SuLinearForm operator*(const SuLinearForm &sulf, const complex_t &c)
-
product(right) by a scalar
-
SuTermMatrix operator*(const SuTermMatrix&, const SuTermMatrix&)
-
product SuTermMatrix * SuTermMatrix
-
SuTermVector operator*(const SuTermMatrix &sutM, const SuTermVector &sutV)
-
Product of a SuTermMatrix M and a SuTermVector V, the result is a SuTermVector R the columns dof indices of M, say (j1,j2, …jn), may be different from the dof indices of V say (k1,k2, … kp).
product SuTermMatrix * SuTermVector
The dof indices of result vector will be always the lines dof indices of the matrix, say (i1,i2, …im). It means that the product M_i,j * V_j is performed only for j=k.
when {k1,k2, … kp}={j1,j2, …jn} the product is performed using largematrix product
when {k1,k2, … kp} differs from {j1,j2, …jn}, the vector V is extended and reduced to {j1,j2, …jn} and the product is performed using largematrix product
-
inline SuTermVector operator*(const SuTermVector &s1, const SuTermVector &s2)
-
SuTermVector operator*(const SuTermVector &sutV, const SuTermMatrix &sutM)
-
Product of a SuTermVector V and a SuTermMatrix M, the result is a SuTermVector R the lines dof indices of M, say (i1,i2, …in), may be different from the dof indices of V say (k1,k2, … kp).
product SuTermVector * SuTermMatrix
The dof indices of result vector will be always the columns dof indices of the matrix, say (j1,j2, …jm). It means that the product V_i * M_i,j is performed only for i=k.
when {k1,k2, … kp}={i1,i2, …in} the product is performed using largematrix product
when {k1,k2, … kp} differs from {i1,i2, …in}, the vector V is extended and reduced to {i1,i2, …in} and the product is performed using largematrix product
exists only for particular storage type
-
inline SymbolicFunction &operator*(const SymbolicFunction &f, const complex_t &c)
-
inline SymbolicFunction &operator*(const SymbolicFunction &f, const real_t &r)
-
inline SymbolicFunction &operator*(const SymbolicFunction &f1, const SymbolicFunction &f2)
-
TermVector operator*(const SymbolicTermMatrix &S, const TermVector &X)
-
template<typename T>
LowRankMatrix<T> operator*(const T &s, const LowRankMatrix<T> &L1)
-
template<typename T>
LcTerm<TermMatrix> operator*(const T &t, const TermMatrix &tv)
-
product of TermMatrix by a real or a complex (template T)
-
template<typename T>
LcTerm<TermVector> operator*(const T &t, const TermVector &tv)
-
template<typename T>
LargeMatrix<T> operator*(const T v, const LargeMatrix<T> &mat)
-
Multiple a largeMatrix with a scalar.
-
TermMatrix operator*(const TermMatrix&, const TermMatrix&)
-
product of TermMatrix
-
TermVector operator*(const TermMatrix&, const TermVector&)
-
product TermMatrix * TermVector
product of a TermMatrix A and a TermVector X There are 2 cases:
TermMatrix has a global representation, say scalar_entries_p !=nullptr or entries_p!=nullptr in that case the product is realized as a standard matrix/vector product Note that TermVector X has to have a global representation consistent with column numbering of TermMatrix if it not the case, global representation of X is computed
TermMatrix has a local representation, say scalar_entries_p =0 and entries_p=0 Assume that A has (v1,v2, …, vm) has row unknowns and (u1,u2, …, un) has column unknowns and X has (p1,p2, …, pq) unknowns where pi may belongs to {u1,u2, …, un} but it is not mandatory the result will be always a (v1,v2, …, vm)-TermVector. Only product of matrix block (vi,uj) with vector block pk=uj will be performed For instance: the product of a (u,v)-Termatrix M with a p-TermVector X is a zero v-TermVector: |Mvu 0vp| * [0u Xp]t = [0v] the product of a [(u,p),(v,q)]-Termatrix M with a p-TermVector X is a (v,q)-TermVector: |Mvu Mvp| |0u| |Mvp*Xp| | | | | = | | |Mqu Mqp| |Xp| |Mqp*Xp| Note that the zero blocks are never created; they are not indexed in the map TermVector::suTerms_ ! The real products are made with SuTermMatrix and SuTermVector
-
SymbolicTermMatrix &operator*(const TermMatrix &M, SymbolicTermMatrix &S)
-
template<typename T>
TermMatrix operator*(const TermMatrix &tM, const T &t)
-
product of TermMatrix by a real or a complex (template T)
-
template<typename T>
LcTerm<TermMatrix> operator*(const TermMatrix &tv, const T &t)
-
product of TermMatrix by a real or a complex (template T)
-
TermVector operator*(const TermVector&, const TermMatrix&)
-
product TermVector * TermMatrix
-
inline TermVector operator*(const TermVector &s1, const TermVector &s2)
-
KernelOperatorOnTermVector operator*(const TermVector &tv, const Kernel &ker)
-
tv * ker
-
KernelOperatorOnTermVector operator*(const TermVector &tv, const OperatorOnKernel &opker)
-
tv * opker
-
template<typename T>
LcTerm<TermVector> operator*(const TermVector &tv, const T &t)
-
product and division by a real or a complex (template T)
-
OperatorOnUnknown &operator*(const TermVector &tv, const TestFunction &un)
-
tv*u
-
OperatorOnUnknown &operator*(const TermVector &tv, const Unknown &un)
-
tv*u
-
OperatorOnUnknown &operator*(const TermVector &tv, OperatorOnUnknown &opu)
-
tv*opu
-
TermVector operator*(const TermVector &X, const SymbolicTermMatrix &S)
-
OperatorOnUnknown &operator*(const TestFunction &un, const TermVector &tv)
-
u*tv
-
Transformation operator*(const Transformation &t1, const Transformation &t2)
-
composition of transformations (general case)
-
OperatorOnUnknown &operator*(const Unknown&, const complex_t&)
-
u*r
-
OperatorOnUnknown &operator*(const Unknown&, const Function&)
-
u*F
-
KernelOperatorOnUnknowns operator*(const Unknown&, const Kernel&)
-
u * ker
-
KernelOperatorOnUnknowns operator*(const Unknown&, const KernelOperatorOnUnknowns&)
-
u * opker
-
OperatorOnUnknown &operator*(const Unknown&, const OperatorOnFunction&)
-
u*op(F)
-
OperatorOnUnknown &operator*(const Unknown&, const real_t&)
-
u*r
-
OperatorOnUnknown &operator*(const Unknown&, const Value&)
-
u*val
-
OperatorOnUnknown &operator*(const Unknown&, UnitaryVector)
-
u*n same as nx(u)
-
LcOperatorOnUnknowns operator*(const Unknown &u, const LcOperatorOnUnknown &lcopv)
-
template<typename T>
OperatorOnUnknown &operator*(const Unknown &un, const Matrix<T> &val)
-
u*Matrix
-
OperatorOnUnknown &operator*(const Unknown &un, const TermVector &tv)
-
u*tv
-
template<typename T>
OperatorOnUnknown &operator*(const Unknown &un, const Vector<T> &val)
-
u*Vector
- template<typename T> KernelOperatorOnUnknowns operator* (const Unknown &un, T(fun)(const Point &, const Point &, Parameters &))
-
u * function(Point,Parameters)
- template<typename T> OperatorOnUnknown & operator* (const Unknown &un, T(fun)(const Point &, Parameters &))
-
u * function(Point,Parameters)
- template<typename T> KernelOperatorOnUnknowns operator* (const Unknown &un, T(fun)(const Vector< Point > &, const Vector< Point > &, Parameters &))
-
u * function(Vector<Point>,Parameters)
- template<typename T> OperatorOnUnknown & operator* (const Unknown &un, T(fun)(const Vector< Point > &, Parameters &))
-
u * function(Vector<Point>,Parameters)
-
KernelOperatorOnTermVectorAndUnknown operator*(const Unknown &v, const KernelOperatorOnTermVector &koptv)
-
OperatorOnUnknown &operator*(const Value&, const Unknown&)
-
val*u
-
OperatorOnUnknown &operator*(const Value&, OperatorOnUnknown&)
-
product syntax V*Op(u)
-
Vector<complex_t> operator*(const Vector<complex_t> &cA, const real_t &x)
-
multiply complex vector by real scalar
multiply complex vector by real scalar “A * x”
-
Vector<complex_t> operator*(const Vector<complex_t> &cV, const Matrix<real_t> &rA)
-
complex vector * real matrix
complex vector x real matrix
-
template<typename K>
Vector<K> operator*(const Vector<K> &a, const K &x)
-
multiply vector by a scalar “A * x”
-
template<typename K>
Vector<K> operator*(const Vector<K> &a, const Vector<K> &b)
-
forbidden product of vector
-
Vector<complex_t> operator*(const Vector<real_t> &rA, const complex_t &x)
-
multiply real vector by complex scalar
multiply real vector by complex scalar “A * x”
-
Vector<complex_t> operator*(const Vector<real_t> &rV, const Matrix<complex_t> &cA)
-
real vector * complex matrix
real vector x complex matrix
-
template<typename T>
OperatorOnUnknown &operator*(const Vector<T> &val, const Unknown &un)
-
Vector*u.
-
template<typename T>
OperatorOnUnknown &operator*(const Vector<T> &val, OperatorOnUnknown &opu)
-
template<typename K, typename V>
Vector<K> operator*(const Vector<V> &v, const Matrix<K> &m)
-
vector x matrix (template)
-
Vector<Vector<complex_t>> operator*(const Vector<Vector<complex_t>>&, const complex_t&)
-
multiply complex vector by complex scalar “A * x”
-
template<typename T>
Vector<Vector<T>> operator*(const Vector<Vector<T>> &A, const real_t &x)
-
multiply vector of vector<T> by a real “A * x”
-
template<typename K, typename KK>
VectorEigenDense<K> operator*(const VectorEigenDense<K> &vec, const KK &k)
-
VectorEntry operator*(const VectorEntry &vec, const MatrixEntry &mat)
-
vector * matrix (consistent structure)
vector * matrix
-
SymbolicTermMatrix &operator*(LcTerm<TermMatrix> &LC, SymbolicTermMatrix &S)
-
OperatorOnFunction &operator*(OperatorOnFunction&, UnitaryVector)
-
opf*n
-
OperatorOnKernel &operator*(OperatorOnKernel&, UnitaryVector)
-
opker*n
-
OperatorOnUnknown &operator*(OperatorOnUnknown&, const Function&)
-
product syntax Op(u)*F
-
OperatorOnUnknown &operator*(OperatorOnUnknown&, const OperatorOnFunction&)
-
product syntax Op(u)*op(F)
-
OperatorOnUnknown &operator*(OperatorOnUnknown&, const Value&)
-
product syntax Op(u)*V
-
OperatorOnUnknowns operator*(OperatorOnUnknown&, OperatorOnUnknown&)
-
opu * opv
-
OperatorOnUnknown &operator*(OperatorOnUnknown&, UnitaryVector)
-
div*n same as ndiv(u)
-
OperatorOnUnknowns operator*(OperatorOnUnknown&, Unknown&)
-
opu * v
-
OperatorOnUnknown &operator*(OperatorOnUnknown &opu, const complex_t &val)
-
template<typename T>
OperatorOnUnknown &operator*(OperatorOnUnknown &opu, const Matrix<T> &val)
-
OperatorOnUnknown &operator*(OperatorOnUnknown &opu, const real_t &val)
-
OperatorOnUnknown &operator*(OperatorOnUnknown &opu, const TermVector &tv)
-
opu*tv
-
template<typename T>
OperatorOnUnknown &operator*(OperatorOnUnknown &opu, const Vector<T> &val)
- template<typename T> OperatorOnUnknown & operator* (OperatorOnUnknown &opu, T(fun)(const Point &, Parameters &))
-
opu * function(Point,Parameters)
- template<typename T> OperatorOnUnknown & operator* (OperatorOnUnknown &opu, T(fun)(const Vector< Point > &, Parameters &))
-
opu * function(Vector<Point>,Parameters)
-
inline real_t operator*(real_t a, const AngleUnit &u)
-
SymbolicTermMatrix &operator*(SymbolicTermMatrix &S, const complex_t &c)
-
SymbolicTermMatrix &operator*(SymbolicTermMatrix &S, const TermMatrix &M)
-
SymbolicTermMatrix &operator*(SymbolicTermMatrix &S, LcTerm<TermMatrix> &LC)
-
SymbolicTermMatrix &operator*(SymbolicTermMatrix &S1, SymbolicTermMatrix &S2)
- template<typename T> KernelOperatorOnUnknowns operator* (T(fun)(const Point &, const Point &, Parameters &), const Unknown &un)
-
function(Point,Parameters) * u
- template<typename T> OperatorOnUnknown & operator* (T(fun)(const Point &, Parameters &), const Unknown &un)
-
function(Point,Parameters) * u
- template<typename T> OperatorOnUnknown & operator* (T(fun)(const Point &, Parameters &), OperatorOnUnknown &opu)
-
function(Point,Parameters) * opu
- template<typename T> KernelOperatorOnUnknowns operator* (T(fun)(const Vector< Point > &, const Vector< Point > &, Parameters &), const Unknown &un)
-
function(Vector<Point>,Parameters) * u
- template<typename T> OperatorOnUnknown & operator* (T(fun)(const Vector< Point > &, Parameters &), const Unknown &un)
-
function(Vector<Point>,Parameters) * u
- template<typename T> OperatorOnUnknown & operator* (T(fun)(const Vector< Point > &, Parameters &), OperatorOnUnknown &opu)
-
function(Vector<Point>,Parameters) * opu
-
OperatorOnFunction &operator*(UnitaryVector n, const complex_t &v)
-
v*n same as f_v*n
n*v same as n*f_v
-
OperatorOnFunction &operator*(UnitaryVector n, const Matrix<complex_t> &v)
-
v*n same as f_v*n
n*v same as n*f_v
-
OperatorOnFunction &operator*(UnitaryVector n, const Matrix<real_t> &v)
-
v*n same as f_v*n
n*v same as n*f_v
-
OperatorOnFunction &operator*(UnitaryVector n, const real_t &v)
-
v*n same as f_v*n
n*v same as n*f_v
-
OperatorOnFunction &operator*(UnitaryVector, const Function&)
-
n*f same as ntimes(f)/ncrossntimes(f)
-
OperatorOnKernel &operator*(UnitaryVector, const Kernel&)
-
n*ker same as ntimes(ker)
-
OperatorOnUnknown &operator*(UnitaryVector, const Unknown&)
-
n*u same as nx(u)
-
OperatorOnFunction &operator*(UnitaryVector, OperatorOnFunction&)
-
n*opf
-
OperatorOnKernel &operator*(UnitaryVector, OperatorOnKernel&)
-
n*opker
-
OperatorOnUnknown &operator*(UnitaryVector, OperatorOnUnknown&)
-
n*div same as ndiv(u)
-
OperatorOnUnknowns operator*(Unknown&, OperatorOnUnknown&)
-
u * opv
-
OperatorOnUnknowns operator*(Unknown&, Unknown&)
-
u * v
-
const BilinearForm &operator+(const BilinearForm&)
-
same bilinear form
-
BilinearForm operator+(const BilinearForm&, const BilinearForm&)
-
sum of bilinear forms
-
inline SymbolicFunction &operator+(const complex_t &c, const SymbolicFunction &f)
-
Matrix<complex_t> operator+(const complex_t &x, const Matrix<real_t> &rA)
-
add a complex scalar to a real matrix
complex x + real matrix A
-
Vector<complex_t> operator+(const complex_t &x, const Vector<real_t> &rA)
-
add a scalar to vector
add complex scalar to real vector
-
complex_t operator+(const complex_t &z, const int i)
-
complex_t operator+(const complex_t &z, const int_t i)
-
complex_t operator+(const complex_t &z, const number_t n)
-
GeomDomain &operator+(const GeomDomain &dom1, const GeomDomain &dom2)
-
create the domain made of union of elements (same dimension)
-
complex_t operator+(const int i, const complex_t &z)
-
complex_t operator+(const int_t i, const complex_t &z)
-
template<typename K>
Vector<K> operator+(const K &x, const Vector<K> &a)
-
add a scalar to a vect or “x+A”
-
LcKernelOperatorOnUnknowns operator+(const KernelOperatorOnUnknowns &opkuv, const LcKernelOperatorOnUnknowns &lc)
-
LcKernelOperatorOnUnknowns operator+(const KernelOperatorOnUnknowns &opkuv1, const KernelOperatorOnUnknowns &opkuv2)
-
template<typename K, typename KK>
Matrix<K> operator+(const KK &x, const Matrix<K> &a)
-
scalar x + matrix A
-
template<typename K, typename KK>
SparseMatrix<K> operator+(const KK &x, const SparseMatrix<K> &a)
-
scalar x + matrix A
-
LargeMatrix<complex_t> operator+(const LargeMatrix<complex_t> &matA, const LargeMatrix<real_t> &matB)
-
LargeMatrix<complex_t> operator+(const LargeMatrix<real_t> &matA, const LargeMatrix<complex_t> &matB)
-
template<typename T>
LargeMatrix<T> operator+(const LargeMatrix<T> &matA, const LargeMatrix<T> &matB)
-
LcKernelOperatorOnUnknowns operator+(const LcKernelOperatorOnUnknowns&)
-
algebraic operations
-
LcKernelOperatorOnUnknowns operator+(const LcKernelOperatorOnUnknowns &lc, const KernelOperatorOnUnknowns &opkuv)
-
LcKernelOperatorOnUnknowns operator+(const LcKernelOperatorOnUnknowns &lc1, const LcKernelOperatorOnUnknowns &lc2)
-
LcOperatorOnUnknown operator+(const LcOperatorOnUnknown&)
-
algebraic operations
-
LcOperatorOnUnknown operator+(const LcOperatorOnUnknown &lc, const OperatorOnUnknown &opu)
-
LcOperatorOnUnknown operator+(const LcOperatorOnUnknown &lc, const Unknown &u)
-
LcOperatorOnUnknown operator+(const LcOperatorOnUnknown &lc1, const LcOperatorOnUnknown &lc2)
-
LcOperatorOnUnknowns operator+(const LcOperatorOnUnknowns &lc)
-
LcOperatorOnUnknowns operator+(const LcOperatorOnUnknowns &lc, const OperatorOnUnknowns &opus)
-
LcOperatorOnUnknowns operator+(const LcOperatorOnUnknowns &lc1, const LcOperatorOnUnknowns &lc2)
-
LcTerm<TermMatrix> operator+(const LcTerm<TermMatrix>&, const TermMatrix&)
-
addition of a TermMatrix to a LcTerm
-
LcTerm<TermVector> operator+(const LcTerm<TermVector> &lctv, const TermVector &tv)
-
LinearForm operator+(const LinearForm&, const LinearForm&)
-
sum of linear forms
-
template<typename T>
LowRankMatrix<T> operator+(const LowRankMatrix<T> &L1)
-
template<typename T>
LowRankMatrix<T> operator+(const LowRankMatrix<T> &L1, const LowRankMatrix<T> &L2)
-
Matrix<complex_t> operator+(const Matrix<complex_t> &cA, const Matrix<real_t> &rB)
-
add a real matrix and a complex matrix
complex matrix A + real matrix B
-
template<typename K, typename KK>
Matrix<K> operator+(const Matrix<K> &a, const KK &x)
-
matrix A + scalar x
-
Matrix<complex_t> operator+(const Matrix<real_t> &rA, const complex_t &x)
-
add a complex scalar to a real matrix
real matrix A + complex x
-
Matrix<complex_t> operator+(const Matrix<real_t> &rA, const Matrix<complex_t> &cB)
-
add a complex matrix and a real matrix
real matrix A + complex matrix B
-
complex_t operator+(const number_t n, const complex_t &z)
-
LcOperatorOnUnknown operator+(const OperatorOnUnknown &opu, const LcOperatorOnUnknown &lc)
-
LcOperatorOnUnknown operator+(const OperatorOnUnknown &opu, const OperatorOnUnknown &opv)
-
LcOperatorOnUnknown operator+(const OperatorOnUnknown &opu, const Unknown &v)
-
LcOperatorOnUnknowns operator+(const OperatorOnUnknowns&, const OperatorOnUnknowns&)
-
algebraic operations
-
LcOperatorOnUnknowns operator+(const OperatorOnUnknowns &opus, const LcOperatorOnUnknowns &lc)
-
template<typename K>
PolynomialT<K> operator+(const PolynomialT<K> &p1, const PolynomialT<K> &p2)
-
inline SymbolicFunction &operator+(const real_t &r, const SymbolicFunction &f)
-
Vector<complex_t> operator+(const real_t &x, const Vector<complex_t> &cA)
-
add a scalar to vector
add real scalar to complex vector
-
template<typename K, typename KK>
SparseMatrix<K> operator+(const SparseMatrix<K> &a, const KK &x)
-
matrix A + scalar x
-
template<typename K, typename KK>
SparseMatrix<K> operator+(const SparseMatrix<K> &a, const SparseMatrix<KK> &b)
-
sum of two matrices
-
template<typename K>
SparseMatrix<K> operator+(const SparseMatrix<K> &m)
-
unary operator+
-
SuBilinearForm operator+(const SuBilinearForm&, const SuBilinearForm&)
-
sum of bilinear forms
-
SuLinearForm operator+(const SuLinearForm &sulf1, const SuLinearForm &sulf2)
-
sum of linear forms
-
inline SuTermVector operator+(const SuTermVector &s)
-
inline SuTermVector operator+(const SuTermVector &s1, const SuTermVector &s2)
-
binary and unary operators applied to SuTermVector’s, assuming they have the same size
-
inline SymbolicFunction &operator+(const SymbolicFunction &f)
-
inline SymbolicFunction &operator+(const SymbolicFunction &f, const complex_t &c)
-
inline SymbolicFunction &operator+(const SymbolicFunction &f, const real_t &r)
-
inline SymbolicFunction &operator+(const SymbolicFunction &f1, const SymbolicFunction &f2)
-
const TermMatrix &operator+(const TermMatrix&)
-
unary operator+
-
LcTerm<TermMatrix> operator+(const TermMatrix&, const LcTerm<TermMatrix>&)
-
addition of a TermMatrix to a LcTerm
-
LcTerm<TermMatrix> operator+(const TermMatrix&, const TermMatrix&)
-
addition of TermMatrix
-
SymbolicTermMatrix &operator+(const TermMatrix &M, SymbolicTermMatrix &S)
-
const TermVector &operator+(const TermVector &tv)
-
multiple algebraic operations on TermVector produce a LcTerm object (linear combination of terms) the computation is done by constructor from LcTerm or assign operation of a LcTerm
addition of TermVector
-
LcTerm<TermVector> operator+(const TermVector &tv, const LcTerm<TermVector> &lctv)
-
LcTerm<TermVector> operator+(const TermVector &tv1, const TermVector &tv2)
-
LcOperatorOnUnknown operator+(const Unknown &u, const LcOperatorOnUnknown &lc)
-
LcOperatorOnUnknown operator+(const Unknown &u, const OperatorOnUnknown &opv)
-
LcOperatorOnUnknown operator+(const Unknown &u, const Unknown &v)
-
Vector<complex_t> operator+(const Vector<complex_t> &cA, const real_t &x)
-
add a scalar to vector
add real scalar to complex vector
-
Vector<complex_t> operator+(const Vector<complex_t> &cA, const Vector<real_t> &rB)
-
vector addition
vector addition “ complex A + real B”
-
template<typename K>
Vector<K> operator+(const Vector<K> &a, const K &x)
-
add a scalar to a vector “A+x”
-
Vector<complex_t> operator+(const Vector<real_t> &rA, const complex_t &x)
-
add a scalar to vector
add complex scalar to real vector
-
Vector<complex_t> operator+(const Vector<real_t> &rA, const Vector<complex_t> &cB)
-
vector addition
vector addition “ real A + complex B”
-
SymbolicTermMatrix &operator+(LcTerm<TermMatrix> &LC, SymbolicTermMatrix &S)
-
SymbolicTermMatrix &operator+(SymbolicTermMatrix &S, const TermMatrix &M)
-
SymbolicTermMatrix &operator+(SymbolicTermMatrix &S, LcTerm<TermMatrix> &LC)
-
SymbolicTermMatrix &operator+(SymbolicTermMatrix &S1, SymbolicTermMatrix &S2)
-
BilinearForm operator-(const BilinearForm&)
-
opposite of a bilinear form
-
BilinearForm operator-(const BilinearForm&, const BilinearForm&)
-
difference of bilinear forms
-
inline SymbolicFunction &operator-(const complex_t &c, const SymbolicFunction &f)
-
Matrix<complex_t> operator-(const complex_t &x, const Matrix<real_t> &rA)
-
complex value - real matrix
complex x - real matrix A
-
Vector<complex_t> operator-(const complex_t &x, const Vector<real_t> &rA)
-
subtract real vector from complex scalar
subtract “complex x - A”
-
complex_t operator-(const complex_t &z, const int i)
-
complex_t operator-(const complex_t &z, const int_t i)
-
complex_t operator-(const complex_t &z, const number_t n)
-
GeomDomain &operator-(const GeomDomain &dom1, const GeomDomain &dom2)
-
internal tool used by MeshDomain::ficticiousDomain
create the domain made of dom1 elements that are not in dom2
-
complex_t operator-(const int i, const complex_t &z)
-
complex_t operator-(const int_t i, const complex_t &z)
-
template<typename K>
Vector<K> operator-(const K &x, const Vector<K> &a)
-
subtract vector from scalar “x-A”
-
LcKernelOperatorOnUnknowns operator-(const KernelOperatorOnUnknowns &opkuv, const LcKernelOperatorOnUnknowns &lc)
-
LcKernelOperatorOnUnknowns operator-(const KernelOperatorOnUnknowns &opkuv1, const KernelOperatorOnUnknowns &opkuv2)
-
template<typename K, typename KK>
Matrix<K> operator-(const KK &x, const Matrix<K> &a)
-
scalar x - matrix A
-
template<typename K, typename KK>
SparseMatrix<K> operator-(const KK &x, const SparseMatrix<K> &a)
-
scalar x - matrix A
-
LargeMatrix<complex_t> operator-(const LargeMatrix<complex_t> &matA, const LargeMatrix<real_t> &matB)
-
LargeMatrix<complex_t> operator-(const LargeMatrix<real_t> &matA, const LargeMatrix<complex_t> &matB)
-
template<typename T>
LargeMatrix<T> operator-(const LargeMatrix<T> &matA, const LargeMatrix<T> &matB)
-
LcKernelOperatorOnUnknowns operator-(const LcKernelOperatorOnUnknowns &lc)
-
LcKernelOperatorOnUnknowns operator-(const LcKernelOperatorOnUnknowns &lc, const KernelOperatorOnUnknowns &opkuv)
-
LcKernelOperatorOnUnknowns operator-(const LcKernelOperatorOnUnknowns &lc1, const LcKernelOperatorOnUnknowns &lc2)
-
LcOperatorOnUnknown operator-(const LcOperatorOnUnknown &lc)
-
LcOperatorOnUnknown operator-(const LcOperatorOnUnknown &lc, const OperatorOnUnknown &opu)
-
LcOperatorOnUnknown operator-(const LcOperatorOnUnknown &lc, const Unknown &u)
-
LcOperatorOnUnknown operator-(const LcOperatorOnUnknown &lc1, const LcOperatorOnUnknown &lc2)
-
LcOperatorOnUnknowns operator-(const LcOperatorOnUnknowns &lc)
-
LcOperatorOnUnknowns operator-(const LcOperatorOnUnknowns &lc, const OperatorOnUnknowns &opus)
-
LcOperatorOnUnknowns operator-(const LcOperatorOnUnknowns &lc1, const LcOperatorOnUnknowns &lc2)
-
LcTerm<TermMatrix> operator-(const LcTerm<TermMatrix>&, const TermMatrix&)
-
substraction of a TermMatrix of a LcTerm
-
LcTerm<TermVector> operator-(const LcTerm<TermVector> &lctv, const TermVector &tv)
-
LinearForm operator-(const LinearForm&)
-
opposite of a linear form
-
LinearForm operator-(const LinearForm&, const LinearForm&)
-
difference of linear forms
-
template<typename T>
LowRankMatrix<T> operator-(const LowRankMatrix<T> &L1)
-
template<typename T>
LowRankMatrix<T> operator-(const LowRankMatrix<T> &L1, const LowRankMatrix<T> &L2)
-
Matrix<complex_t> operator-(const Matrix<complex_t> &cA, const Matrix<real_t> &rB)
-
real matrix - complex matrix
complex matrix A - real matrix B
-
template<typename K, typename KK>
Matrix<K> operator-(const Matrix<K> &a, const KK &x)
-
matrix A - scalar x
-
Matrix<complex_t> operator-(const Matrix<real_t> &rA, const complex_t &x)
-
real matrix - complex value
real matrix A - complex x
-
Matrix<complex_t> operator-(const Matrix<real_t> &rA, const Matrix<complex_t> &cB)
-
complex matrix - real matrix
real matrix A - complex matrix B
-
complex_t operator-(const number_t n, const complex_t &z)
-
LcOperatorOnUnknown operator-(const OperatorOnUnknown &opu, const LcOperatorOnUnknown &lc)
-
LcOperatorOnUnknown operator-(const OperatorOnUnknown &opu, const OperatorOnUnknown &opv)
-
LcOperatorOnUnknown operator-(const OperatorOnUnknown &opu, const Unknown &v)
-
LcOperatorOnUnknowns operator-(const OperatorOnUnknowns &opus, const LcOperatorOnUnknowns &lc)
-
LcOperatorOnUnknowns operator-(const OperatorOnUnknowns &opus1, const OperatorOnUnknowns &opus2)
-
template<typename K>
PolynomialT<K> operator-(const PolynomialT<K> &m)
-
template<typename K>
PolynomialT<K> operator-(const PolynomialT<K> &p1, const PolynomialT<K> &p2)
-
inline SymbolicFunction &operator-(const real_t &r, const SymbolicFunction &f)
-
Vector<complex_t> operator-(const real_t &x, const Vector<complex_t> &cA)
-
substract complex vector from real scalar
subtract real scalar to complex vector
-
template<typename K, typename KK>
SparseMatrix<K> operator-(const SparseMatrix<K> &a, const KK &x)
-
matrix A - scalar x
-
template<typename K, typename KK>
SparseMatrix<K> operator-(const SparseMatrix<K> &a, const SparseMatrix<KK> &b)
-
matrix A - matrix B
-
template<typename K>
SparseMatrix<K> operator-(const SparseMatrix<K> &m)
-
unary operator- (negation operator)
-
SuBilinearForm operator-(const SuBilinearForm&)
-
opposite of bilinear form
-
SuBilinearForm operator-(const SuBilinearForm&, const SuBilinearForm&)
-
difference of bilinear forms
-
SuLinearForm operator-(const SuLinearForm &sulf)
-
opposite of linear form
-
SuLinearForm operator-(const SuLinearForm &sulf1, const SuLinearForm &sulf2)
-
difference of linear forms
-
inline SuTermVector operator-(const SuTermVector &s)
-
inline SuTermVector operator-(const SuTermVector &s1, const SuTermVector &s2)
-
inline SymbolicFunction &operator-(const SymbolicFunction &f)
-
inline SymbolicFunction &operator-(const SymbolicFunction &f, const complex_t &c)
-
inline SymbolicFunction &operator-(const SymbolicFunction &f, const real_t &r)
-
inline SymbolicFunction &operator-(const SymbolicFunction &f1, const SymbolicFunction &f2)
-
LcTerm<TermMatrix> operator-(const TermMatrix&)
-
unary operator- (returns a LcTerm)
-
LcTerm<TermMatrix> operator-(const TermMatrix&, const LcTerm<TermMatrix>&)
-
substraction of a LcTerm from a TermMatrix
-
LcTerm<TermMatrix> operator-(const TermMatrix&, const TermMatrix&)
-
substraction of TermMatrix of a TermMatrix
-
SymbolicTermMatrix &operator-(const TermMatrix &M, SymbolicTermMatrix &S)
-
LcTerm<TermVector> operator-(const TermVector &tv)
-
substraction of TermVector
-
LcTerm<TermVector> operator-(const TermVector &tv, const LcTerm<TermVector> &lctv)
-
LcTerm<TermVector> operator-(const TermVector &tv1, const TermVector &tv2)
-
LcOperatorOnUnknown operator-(const Unknown &u, const LcOperatorOnUnknown &lc)
-
LcOperatorOnUnknown operator-(const Unknown &u, const OperatorOnUnknown &opv)
-
LcOperatorOnUnknown operator-(const Unknown &u, const Unknown &v)
-
Vector<complex_t> operator-(const Vector<complex_t> &cA, const real_t &x)
-
substract real scalar from complex vector
subtract real scalar to complex vector
-
Vector<complex_t> operator-(const Vector<complex_t> &cA, const Vector<real_t> &rB)
-
vector subtraction A - B
vector subtraction “complex A - real B”
-
template<typename K>
Vector<K> operator-(const Vector<K> &a, const K &x)
-
subtract vector from scalar “A-x”
-
template<typename K>
Vector<K> operator-(const Vector<K> &a, const Vector<K> &b)
-
vector subtraction “A-B”
-
Vector<complex_t> operator-(const Vector<real_t> &rA, const complex_t &x)
-
subtract scalar from vector A - x
subtract scalar to vector “ A - complex x”
-
Vector<complex_t> operator-(const Vector<real_t> &rA, const Vector<complex_t> &cB)
-
vector subtraction A - B
vector subtraction “real A - complex B”
-
SymbolicTermMatrix &operator-(LcTerm<TermMatrix> &LC, SymbolicTermMatrix &S)
-
SymbolicTermMatrix &operator-(SymbolicTermMatrix &S, const TermMatrix &M)
-
SymbolicTermMatrix &operator-(SymbolicTermMatrix &S, LcTerm<TermMatrix> &LC)
-
SymbolicTermMatrix &operator-(SymbolicTermMatrix &S1, SymbolicTermMatrix &S2)
-
BilinearForm operator/(const BilinearForm&, const complex_t&)
-
division by a complex scalar
-
BilinearForm operator/(const BilinearForm&, const int&)
-
division by an integer scalar
-
BilinearForm operator/(const BilinearForm&, const int_t&)
-
division by an integer scalar
-
BilinearForm operator/(const BilinearForm&, const number_t&)
-
division by an integer scalar
-
BilinearForm operator/(const BilinearForm&, const real_t&)
-
division by a real scalar
-
inline SymbolicFunction &operator/(const complex_t &c, const SymbolicFunction &f)
-
complex_t operator/(const complex_t &z, const int i)
-
complex_t operator/(const complex_t &z, const int_t i)
-
complex_t operator/(const complex_t &z, const number_t n)
-
LcKernelOperatorOnUnknowns operator/(const LcKernelOperatorOnUnknowns &lc, const complex_t &a)
-
LcKernelOperatorOnUnknowns operator/(const LcKernelOperatorOnUnknowns &lc, const real_t &a)
-
LcOperatorOnUnknown operator/(const LcOperatorOnUnknown &lc, const complex_t &a)
-
LcOperatorOnUnknown operator/(const LcOperatorOnUnknown &lc, const real_t &a)
-
LcOperatorOnUnknowns operator/(const LcOperatorOnUnknowns &lc, const complex_t &a)
-
LcOperatorOnUnknowns operator/(const LcOperatorOnUnknowns &lc, const real_t &a)
-
LinearForm operator/(const LinearForm&, const complex_t&)
-
division by a scalar
-
LinearForm operator/(const LinearForm&, const int&)
-
division by a scalar
-
LinearForm operator/(const LinearForm&, const int_t&)
-
division by a scalar
-
LinearForm operator/(const LinearForm&, const number_t&)
-
division by a scalar
-
LinearForm operator/(const LinearForm&, const real_t&)
-
division by a scalar
-
template<typename T>
LowRankMatrix<T> operator/(const LowRankMatrix<T> &L1, const T &s)
-
template<typename K, typename KK>
Matrix<K> operator/(const Matrix<K> &a, const KK &x)
-
matrix A / scalar x
-
Matrix<complex_t> operator/(const Matrix<real_t> &rA, const complex_t &x)
-
divide real matrix by a complex value
real matrix A / complex x
-
template<typename K>
PolynomialT<K> operator/(const MonomialT<K> &m, const K &k)
-
template<typename K>
PolynomialT<K> operator/(const PolynomialT<K> &p, const K &k)
-
inline SymbolicFunction &operator/(const real_t &r, const SymbolicFunction &f)
-
template<typename K, typename KK>
SparseMatrix<K> operator/(const SparseMatrix<K> &a, const KK &x)
-
matrix A / scalar x
-
SuBilinearForm operator/(const SuBilinearForm&, const complex_t&)
-
divide by a scalar
-
SuLinearForm operator/(const SuLinearForm &sulf, const complex_t &c)
-
division by a scalar
-
inline SuTermVector operator/(const SuTermVector &s1, const SuTermVector &s2)
-
inline SymbolicFunction &operator/(const SymbolicFunction &f, const complex_t &c)
-
inline SymbolicFunction &operator/(const SymbolicFunction &f, const real_t &r)
-
inline SymbolicFunction &operator/(const SymbolicFunction &f1, const SymbolicFunction &f2)
-
template<typename T>
LcTerm<TermMatrix> operator/(const TermMatrix &tv, const T &t)
-
division of TermMatrix by a real or a complex (template T)
-
inline TermVector operator/(const TermVector &s1, const TermVector &s2)
-
template<typename T>
LcTerm<TermVector> operator/(const TermVector &tv, const T &t)
-
Vector<complex_t> operator/(const Vector<complex_t> &cA, const real_t &x)
-
divide complex vector by real scalar
divide complex vector by real scalar “A / x”
-
template<typename K>
Vector<K> operator/(const Vector<K> &a, const K &x)
-
divide vector by a scalar “ A / x”
-
Vector<complex_t> operator/(const Vector<real_t> &rA, const complex_t &x)
-
divide real vector by complex scalar
divide real vector by complex scalar “A / x”
-
Vector<Vector<complex_t>> operator/(const Vector<Vector<complex_t>>&, const complex_t&)
-
divide complex vector by complex scalar “A / x”
-
template<typename T>
Vector<Vector<T>> operator/(const Vector<Vector<T>> &A, const real_t &x)
-
multiply vector of vector<T> by a real “A * x”
-
template<typename T>
inline VectorEntry operator/(const VectorEntry &v, const T &a)
-
operation V/=a
-
SymbolicTermMatrix &operator/(SymbolicTermMatrix &S, const complex_t &c)
-
inline SymbolicFunction &operator<(const complex_t &c, const SymbolicFunction &f)
-
bool operator<(const DofComponent&, const DofComponent&)
-
less than
-
bool operator<(const GeomElement&, const GeomElement&)
-
operator < to sort elements
-
inline SymbolicFunction &operator<(const real_t &r, const SymbolicFunction &f)
-
template<typename T, template<class> class OP, class CP, template<class> class KP, template<class> class SP, template<class> class CNP, typename U>
inline bool operator<(const SmartPtr<T, OP, CP, KP, SP, CNP> &lhs, U *rhs)
-
inline SymbolicFunction &operator<(const SymbolicFunction &f, const complex_t &c)
-
inline SymbolicFunction &operator<(const SymbolicFunction &f, const real_t &r)
-
inline SymbolicFunction &operator<(const SymbolicFunction &f1, const SymbolicFunction &f2)
-
template<typename T, template<class> class OP, class CP, template<class> class KP, template<class> class SP, template<class> class CNP, typename U>
inline bool operator<(U *lhs, const SmartPtr<T, OP, CP, KP, SP, CNP> &rhs)
-
template<typename T>
inline ComparisonFunction<T> operator<(VarComparison, const T &a)
-
template<typename T>
Collection<T> &operator<<(Collection<T> &ns, const T &n)
-
insertion utility
-
template<typename T>
PCollection<T> &operator<<(PCollection<T> &ts, const T &t)
-
insertion operator
-
std::ostream &operator<<(std::ostream&, const BilinearForm&)
-
output BilinearForm
-
std::ostream &operator<<(std::ostream&, const CompositeDomain&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const Constraints&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const CrackData&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const DifferentialOperator&)
-
print utility
-
std::ostream &operator<<(std::ostream&, const Dof&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const DofComponent&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const DomainInfo&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const EigenElements&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const Element&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const EssentialCondition&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const EssentialConditions&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const FeSubSpace&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const Function&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const GeomDomain&)
-
print geomdomain
-
std::ostream &operator<<(std::ostream&, const GeomElement&)
-
outputs geomelement characteristics
-
std::ostream &operator<<(std::ostream&, const GeomMapData&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const IntegrationMethod&)
-
output IntegrationMethod on stream
-
std::ostream &operator<<(std::ostream&, const Interpolation&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const Kernel&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const KernelOperatorOnUnknowns&)
-
outputs OperatorOnUnknown attributes
-
std::ostream &operator<<(std::ostream&, const LcKernelOperatorOnUnknowns&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const LcOperatorOnUnknown&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const LcOperatorOnUnknowns&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const LinearForm&)
-
output LinearForm
-
std::ostream &operator<<(std::ostream&, const MatrixEntry&)
-
print on ostream
-
std::ostream &operator<<(std::ostream&, const MatrixStorage&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const Mesh&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const MeshDomain&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const MeshElement&)
-
prints characteristics and point numbers
-
std::ostream &operator<<(std::ostream&, const OperatorOnUnknown&)
-
outputs OperatorOnUnknown attributes
-
std::ostream &operator<<(std::ostream&, const OperatorOnUnknowns&)
-
outputs OperatorOnUnknown attributes
-
std::ostream &operator<<(std::ostream&, const Parameter&)
-
output operator
-
std::ostream &operator<<(std::ostream&, const Parameters&)
-
flux insertion (write)
-
std::ostream &operator<<(std::ostream&, const PhysicalData&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const Point&)
-
ostream insert
-
std::ostream &operator<<(std::ostream&, const PointsDomain&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const Projector&)
-
output on stream
-
std::ostream &operator<<(std::ostream&, const Quadrature&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const QuadratureIM&)
-
output on stream
-
std::ostream &operator<<(std::ostream&, const QuadratureRule&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const RefElement&)
-
output operator
-
std::ostream &operator<<(std::ostream&, const SetOfConstraints&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const SpectralBasis&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const SuBilinearForm&)
-
output SuBilinearForm
-
std::ostream &operator<<(std::ostream&, const SubSpace&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const Term&)
-
print operator
-
std::ostream &operator<<(std::ostream&, const Unknown&)
-
print an unknown
-
std::ostream &operator<<(std::ostream&, const VectorEntry&)
-
output VectorEntry on stream
-
std::ostream &operator<<(std::ostream &os, const BoundingBox &bb)
-
output BoundingBox
-
inline std::ostream &operator<<(std::ostream &os, const Geodesic &g)
-
std::ostream &operator<<(std::ostream &os, const GeomRefElement &obj)
-
prints GeomRefElement object to ostream
print operator
-
std::ostream &operator<<(std::ostream &os, const GeoNumPair &gp)
-
outputs GeoNumPair characteristics
-
template<typename X, typename J>
std::ostream &operator<<(std::ostream &os, const HMatrixNode<X, J> &hm)
-
template<typename T>
std::ostream &operator<<(std::ostream &os, const LargeMatrix<T> &mat)
-
output stream operator
-
std::ostream &operator<<(std::ostream &os, const Matrix<complex_t> &m)
-
complex matrix flux insertion (write)
flux insertion (write)
-
std::ostream &operator<<(std::ostream &os, const Matrix<real_t> &m)
-
real matrix flux insertion (write)
flux insertion (write)
-
std::ostream &operator<<(std::ostream &os, const MatrixEigenDense<complex_t> &m)
-
complex matrix flux insertion (write)
flux insertion (write)
-
std::ostream &operator<<(std::ostream &os, const MatrixEigenDense<real_t> &m)
-
real matrix flux insertion (write)
flux insertion (write)
-
std::ostream &operator<<(std::ostream &os, const MinimalBox &mb)
-
output MinimalBox
-
std::ostream &operator<<(std::ostream &os, const OperatorOnFunction &opf)
-
std::ostream &operator<<(std::ostream &os, const OperatorOnKernel &opk)
-
inline std::ostream &operator<<(std::ostream &os, const ParameterKey &pk)
-
std::ostream &operator<<(std::ostream &os, const RealPair &rp)
-
output pair of reals
-
std::ostream &operator<<(std::ostream &os, const RefDof &obj)
-
print Reference D.o.F data
print operator
-
std::ostream &operator<<(std::ostream &os, const ShapeValues &obj)
-
print shape functions and derivatives to output file stream
print operator
-
inline std::ostream &operator<<(std::ostream &os, const SpaceMap &sm)
-
std::ostream &operator<<(std::ostream &os, const std::set<ParameterKey> &pks)
-
template<typename U>
std::ostream &operator<<(std::ostream &os, const std::vector<U> &v)
-
std::ostream &operator<<(std::ostream &os, const SuLinearForm &sulf)
-
output SuLinearForm
-
std::ostream &operator<<(std::ostream &os, const SuTermVectors &tvs)
-
template<typename T>
std::ostream &operator<<(std::ostream &os, const Tabular<T> &t)
-
general vector flux insertion (write)
-
std::ostream &operator<<(std::ostream &os, const TermVectors &tvs)
-
std::ostream &operator<<(std::ostream &os, const Transformation &t)
-
return the scale factor (=1.
output Transformation
if no homothety)
-
template<typename K>
std::ostream &operator<<(std::ostream &os, const Vector<K> &v)
-
general vector flux insertion (write)
-
std::ostream &operator<<(std::ostream &out, const AccessType &at)
-
std::ostream &operator<<(std::ostream &out, const AdjacentStatus &as)
-
print operator for enum associated to a dictionary
-
std::ostream &operator<<(std::ostream &out, const AlgebraicOperator &ao)
-
print operator for enum associated to a dictionary
-
template<typename T>
std::ostream &operator<<(std::ostream &out, const ApproximateMatrix<T> &am)
-
std::ostream &operator<<(std::ostream &out, const BCsub &bcs)
-
inline std::ostream &operator<<(std::ostream &out, const BezierSpline &sp)
-
inline std::ostream &operator<<(std::ostream &out, const BSpline &sp)
-
inline std::ostream &operator<<(std::ostream &out, const C2Spline &sp)
-
inline std::ostream &operator<<(std::ostream &out, const CatmullRomSpline &sp)
-
std::ostream &operator<<(std::ostream &out, const ClusteringMethod &cm)
-
print operator for enum associated to a dictionary
-
template<typename T>
std::ostream &operator<<(std::ostream &out, const ClusterNode<T> &cn)
-
template<typename T>
std::ostream &operator<<(std::ostream &out, const ClusterTree<T> &ct)
-
template<typename T>
std::ostream &operator<<(std::ostream &out, const Collection<T> &ns)
-
print utility
-
std::ostream &operator<<(std::ostream &out, const ComputationType &ct)
-
std::ostream &operator<<(std::ostream &out, const ContinuityOrder &co)
-
std::ostream &operator<<(std::ostream &out, const DiffOpType &dot)
-
inline std::ostream &operator<<(std::ostream &out, const DofKey &dk)
-
std::ostream &operator<<(std::ostream &out, const DofLocalization &dl)
-
print operator for enum associated to a dictionary
-
std::ostream &operator<<(std::ostream &out, const DofType &dt)
-
std::ostream &operator<<(std::ostream &out, const DomainType &dt)
-
print operator for enum associated to a dictionary
-
std::ostream &operator<<(std::ostream &out, const EcType &et)
-
print operator for enum associated to a dictionary
-
std::ostream &operator<<(std::ostream &out, const EigenSolverType &est)
-
std::ostream &operator<<(std::ostream &out, const FactorizationType &ft)
-
std::ostream &operator<<(std::ostream &out, const FEMapType &femt)
-
print operator for enum associated to a dictionary
-
std::ostream &operator<<(std::ostream &out, const FESubType &fest)
-
std::ostream &operator<<(std::ostream &out, const FEType &fet)
-
std::ostream &operator<<(std::ostream &out, const FuncFormType &fft)
-
std::ostream &operator<<(std::ostream &out, const FunctType &ft)
-
std::ostream &operator<<(std::ostream &out, const HMApproximationMethod &hmam)
-
template<typename T>
std::ostream &operator<<(std::ostream &out, const HMatrixEntry<T> &hme)
-
std::ostream &operator<<(std::ostream &out, const IEcomputationParameters &iep)
-
std::ostream &operator<<(std::ostream &out, const IntegrationMethodType &imt)
-
std::ostream &operator<<(std::ostream &out, const InterpolationType &it)
-
std::ostream &operator<<(std::ostream &out, const IOFormat &iof)
-
std::ostream &operator<<(std::ostream &out, const IterativeSolverType &ist)
-
std::ostream &operator<<(std::ostream &out, const Language &l)
-
template<typename TT>
std::ostream &operator<<(std::ostream &out, const LcTerm<TT> &lc)
-
print operator
-
std::ostream &operator<<(std::ostream &out, const LinearFormType &lft)
-
inline std::ostream &operator<<(std::ostream &out, const Malyuzhinets &mal)
-
std::ostream &operator<<(std::ostream &out, const MemoryUnit &mu)
-
print operator for enum associated to a dictionary
-
std::ostream &operator<<(std::ostream &out, const MsgType &mt)
-
print operator for enum associated to a dictionary
-
inline std::ostream &operator<<(std::ostream &out, const Nurbs &sp)
-
std::ostream &operator<<(std::ostream &out, const OCShapeType &ocst)
-
std::ostream &operator<<(std::ostream &out, const OrientationType &ot)
-
inline std::ostream &operator<<(std::ostream &out, const Parametrization &par)
-
template<typename T>
std::ostream &operator<<(std::ostream &out, const PCollection<T> &ts)
-
print utility
-
template<typename T>
std::ostream &operator<<(std::ostream &out, const PCollectionItem<T> &item)
-
output PCollectionItem on stream
-
std::ostream &operator<<(std::ostream &out, const ProjectionType &pt)
-
print operator for enum associated to a dictionary
-
std::ostream &operator<<(std::ostream &out, const ProjectorType &pt)
-
print operator for enum associated to a dictionary
-
std::ostream &operator<<(std::ostream &out, const QuadRule &qr)
-
std::ostream &operator<<(std::ostream &out, const ReductionMethodType &rmt)
-
std::ostream &operator<<(std::ostream &out, const SetOperationType &sot)
-
print operator for enum associated to a dictionary
-
std::ostream &operator<<(std::ostream &out, const ShapesType &sh)
-
std::ostream &operator<<(std::ostream &out, const ShapeType &sh)
-
std::ostream &operator<<(std::ostream &out, const SobolevType &st)
-
std::ostream &operator<<(std::ostream &out, const Space &sp)
-
output space characteristics
-
std::ostream &operator<<(std::ostream &out, const SpaceType &st)
-
std::ostream &operator<<(std::ostream &out, const SpecialMatrix &sm)
-
print operator for enum associated to a dictionary
-
inline std::ostream &operator<<(std::ostream &out, const Spline &sp)
-
std::ostream &operator<<(std::ostream &out, const SplineBC &sbc)
-
std::ostream &operator<<(std::ostream &out, const SplineParametrization &sp)
-
std::ostream &operator<<(std::ostream &out, const SplineSubtype &sst)
-
std::ostream &operator<<(std::ostream &out, const SplineType &st)
-
template<typename T>
std::ostream &operator<<(std::ostream &out, const std::list<T> &l)
-
print a list
-
template<typename K, typename T>
std::ostream &operator<<(std::ostream &out, const std::map<K, T> &m)
-
print a map
-
template<typename K, typename T>
std::ostream &operator<<(std::ostream &out, const std::multimap<K, T> &m)
-
print a multimap
-
template<typename U, typename V>
std::ostream &operator<<(std::ostream &out, const std::pair<U, std::vector<V>> &p)
-
print a pair with value being a std::vector
-
template<typename U, typename V>
std::ostream &operator<<(std::ostream &out, const std::pair<U, V> &p)
-
print a pair
-
template<typename T>
std::ostream &operator<<(std::ostream &out, const std::set<T> &s)
-
print a set
-
std::ostream &operator<<(std::ostream &out, const StorageBuildType &sbt)
-
std::ostream &operator<<(std::ostream &out, const StorageType &st)
-
std::ostream &operator<<(std::ostream &out, const StrucType &st)
-
std::ostream &operator<<(std::ostream &out, const SupportType &st)
-
inline std::ostream &operator<<(std::ostream &out, const SymbolicFunction &fn)
-
typedef EcType BcType