Class xlifepp::EllArc#

class EllArc : public xlifepp::Curve#

Inheritence diagram for xlifepp::EllArc:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "2" [label="xlifepp::Curve" tooltip="xlifepp::Curve"] "1" [label="xlifepp::EllArc" tooltip="xlifepp::EllArc" fillcolor="#BFBFBF"] "3" [label="xlifepp::Geometry" tooltip="xlifepp::Geometry"] "2" -> "3" [dir=forward tooltip="public-inheritance"] "1" -> "2" [dir=forward tooltip="public-inheritance"] }

Collaboration diagram for xlifepp::EllArc:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "22" [label="xlifepp::Collection< string_t >" tooltip="xlifepp::Collection< string_t >"] "15" [label="xlifepp::Matrix< real_t >" tooltip="xlifepp::Matrix< real_t >"] "19" [label="xlifepp::Vector< real_t >" tooltip="xlifepp::Vector< real_t >"] "30" [label="xlifepp::Vector< xlifepp::Vector< real_t > >" tooltip="xlifepp::Vector< xlifepp::Vector< real_t > >"] "39" [label="std::list< std::pair< number_t, real_t > >" tooltip="std::list< std::pair< number_t, real_t > >"] "11" [label="std::map< number_t, std::vector< number_t > >" tooltip="std::map< number_t, std::vector< number_t > >"] "9" [label="std::map< number_t, xlifepp::Geometry * >" tooltip="std::map< number_t, xlifepp::Geometry * >"] "38" [label="std::map< string_t, number_t >" tooltip="std::map< string_t, number_t >"] "40" [label="std::list< T >" tooltip="std::list< T >"] "10" [label="std::map< K, T >" tooltip="std::map< K, T >"] "6" [label="std::vector< T >" tooltip="std::vector< T >"] "25" [label="std::vector< T >" tooltip="std::vector< T >"] "18" [label="std::vector< K >" tooltip="std::vector< K >"] "5" [label="std::vector< RealPair >" tooltip="std::vector< RealPair >"] "21" [label="std::vector< const xlifepp::Transformation * >" tooltip="std::vector< const xlifepp::Transformation * >"] "26" [label="std::vector< number_t >" tooltip="std::vector< number_t >"] "16" [label="std::vector< real_t >" tooltip="std::vector< real_t >"] "35" [label="std::vector< std::vector< GeoNumPair > >" tooltip="std::vector< std::vector< GeoNumPair > >"] "12" [label="std::vector< std::vector< int_t > >" tooltip="std::vector< std::vector< int_t > >"] "23" [label="std::vector< string_t >" tooltip="std::vector< string_t >"] "34" [label="std::vector< xlifepp::GeomDomain * >" tooltip="std::vector< xlifepp::GeomDomain * >"] "33" [label="std::vector< xlifepp::GeomElement * >" tooltip="std::vector< xlifepp::GeomElement * >"] "37" [label="std::vector< xlifepp::Parameter * >" tooltip="std::vector< xlifepp::Parameter * >"] "8" [label="std::vector< xlifepp::Point >" tooltip="std::vector< xlifepp::Point >"] "27" [label="std::vector< xlifepp::Transformation * >" tooltip="std::vector< xlifepp::Transformation * >"] "31" [label="std::vector< xlifepp::Vector< real_t > >" tooltip="std::vector< xlifepp::Vector< real_t > >"] "4" [label="xlifepp::BoundingBox" tooltip="xlifepp::BoundingBox"] "24" [label="xlifepp::Collection< T >" tooltip="xlifepp::Collection< T >"] "2" [label="xlifepp::Curve" tooltip="xlifepp::Curve"] "1" [label="xlifepp::EllArc" tooltip="xlifepp::EllArc" fillcolor="#BFBFBF"] "13" [label="xlifepp::ExtrusionData" tooltip="xlifepp::ExtrusionData"] "41" [label="xlifepp::GeoNode" tooltip="xlifepp::GeoNode"] "3" [label="xlifepp::Geometry" tooltip="xlifepp::Geometry"] "17" [label="xlifepp::Matrix< K >" tooltip="xlifepp::Matrix< K >"] "32" [label="xlifepp::Mesh" tooltip="xlifepp::Mesh"] "7" [label="xlifepp::MinimalBox" tooltip="xlifepp::MinimalBox"] "36" [label="xlifepp::Parameters" tooltip="xlifepp::Parameters"] "29" [label="xlifepp::Parametrization" tooltip="xlifepp::Parametrization"] "28" [label="xlifepp::Point" tooltip="xlifepp::Point"] "14" [label="xlifepp::Transformation" tooltip="xlifepp::Transformation"] "20" [label="xlifepp::Vector< K >" tooltip="xlifepp::Vector< K >"] "22" -> "23" [dir=forward tooltip="public-inheritance"] "22" -> "24" [dir=forward tooltip="template-instance"] "15" -> "16" [dir=forward tooltip="public-inheritance"] "15" -> "17" [dir=forward tooltip="template-instance"] "19" -> "16" [dir=forward tooltip="public-inheritance"] "19" -> "20" [dir=forward tooltip="template-instance"] "30" -> "31" [dir=forward tooltip="public-inheritance"] "30" -> "20" [dir=forward tooltip="template-instance"] "39" -> "40" [dir=forward tooltip="template-instance"] "11" -> "10" [dir=forward tooltip="template-instance"] "9" -> "10" [dir=forward tooltip="template-instance"] "38" -> "10" [dir=forward tooltip="template-instance"] "18" -> "6" [dir=forward tooltip="template-instance"] "5" -> "6" [dir=forward tooltip="template-instance"] "21" -> "6" [dir=forward tooltip="template-instance"] "26" -> "6" [dir=forward tooltip="template-instance"] "16" -> "6" [dir=forward tooltip="template-instance"] "35" -> "6" [dir=forward tooltip="template-instance"] "12" -> "6" [dir=forward tooltip="template-instance"] "23" -> "6" [dir=forward tooltip="template-instance"] "34" -> "6" [dir=forward tooltip="template-instance"] "33" -> "6" [dir=forward tooltip="template-instance"] "37" -> "6" [dir=forward tooltip="template-instance"] "8" -> "6" [dir=forward tooltip="template-instance"] "27" -> "6" [dir=forward tooltip="template-instance"] "31" -> "6" [dir=forward tooltip="template-instance"] "4" -> "5" [dir=forward tooltip="usage"] "24" -> "25" [dir=forward tooltip="public-inheritance"] "2" -> "3" [dir=forward tooltip="public-inheritance"] "2" -> "26" [dir=forward tooltip="usage"] "2" -> "16" [dir=forward tooltip="usage"] "2" -> "28" [dir=forward tooltip="usage"] "1" -> "2" [dir=forward tooltip="public-inheritance"] "1" -> "28" [dir=forward tooltip="usage"] "13" -> "14" [dir=forward tooltip="usage"] "13" -> "22" [dir=forward tooltip="usage"] "13" -> "26" [dir=forward tooltip="usage"] "13" -> "16" [dir=forward tooltip="usage"] "13" -> "19" [dir=forward tooltip="usage"] "13" -> "27" [dir=forward tooltip="usage"] "13" -> "28" [dir=forward tooltip="usage"] "41" -> "41" [dir=forward tooltip="usage"] "41" -> "3" [dir=forward tooltip="usage"] "3" -> "4" [dir=forward tooltip="usage"] "3" -> "7" [dir=forward tooltip="usage"] "3" -> "9" [dir=forward tooltip="usage"] "3" -> "11" [dir=forward tooltip="usage"] "3" -> "12" [dir=forward tooltip="usage"] "3" -> "13" [dir=forward tooltip="usage"] "3" -> "29" [dir=forward tooltip="usage"] "3" -> "3" [dir=forward tooltip="usage"] "3" -> "41" [dir=forward tooltip="usage"] "17" -> "18" [dir=forward tooltip="public-inheritance"] "32" -> "3" [dir=forward tooltip="usage"] "32" -> "8" [dir=forward tooltip="usage"] "32" -> "33" [dir=forward tooltip="usage"] "32" -> "34" [dir=forward tooltip="usage"] "32" -> "26" [dir=forward tooltip="usage"] "32" -> "35" [dir=forward tooltip="usage"] "32" -> "32" [dir=forward tooltip="usage"] "7" -> "8" [dir=forward tooltip="usage"] "36" -> "37" [dir=forward tooltip="usage"] "36" -> "38" [dir=forward tooltip="usage"] "29" -> "3" [dir=forward tooltip="usage"] "29" -> "19" [dir=forward tooltip="usage"] "29" -> "30" [dir=forward tooltip="usage"] "29" -> "32" [dir=forward tooltip="usage"] "29" -> "36" [dir=forward tooltip="usage"] "29" -> "39" [dir=forward tooltip="usage"] "28" -> "16" [dir=forward tooltip="public-inheritance"] "14" -> "15" [dir=forward tooltip="usage"] "14" -> "19" [dir=forward tooltip="usage"] "14" -> "21" [dir=forward tooltip="usage"] "20" -> "18" [dir=forward tooltip="public-inheritance"] }

definition of an elliptic arc geometry in R^3 (curve)

EllArc constructors are based on a key-value system. Here are the available keys:

  • _center: to define the center of the ellipse supporting the arc

  • _apogee: to define the apogee of the ellipse supporting the arc

  • _v1, _v2: to define the bounds of the arc

  • _nnodes: to define the number of nodes on the arc

  • _hsteps: to define the local mesh steps on the bounds of the arc

  • _domain_name: to define the domain name

  • _side_names: to define the side names

  • _varnames: to define the variable names for print purpose

Public Functions

EllArc()#

default constructor with side names

default ellipse arc is quarter of circle of center (0,0,0) and radius 1

EllArc(const EllArc&)#

copy constructor

EllArc(Parameter p1, Parameter p2, Parameter p3)#

constructor with 3 Parameter

EllArc(Parameter p1, Parameter p2, Parameter p3, Parameter p4)#

constructor with 4 Parameter

EllArc(Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5)#

constructor with 5 Parameter

EllArc(Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5, Parameter p6)#

constructor with 6 Parameter

EllArc(Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5, Parameter p6, Parameter p7)#

constructor with 7 Parameter

inline virtual ~EllArc()#

destructor

virtual string_t asString() const#

format as string

inline const Point &center() const#

accessor to construction point

inline virtual Geometry *clone() const#

virtual copy constructor for Geometry

virtual void computeBAndAngles()#

compute the second apogee

virtual void computeBB()#

compute the bounding box

virtual void computeMB()#

computes the minimal box

virtual std::vector<std::pair<ShapeType, std::vector<const Point*>>> curves() const#

returns list of curves (const)

inline virtual EllArc *ellArc()#

access to child EllArc object

inline virtual const EllArc *ellArc() const#

access to child EllArc object (const)

Vector<real_t> funParametrization(const Point &pt, Parameters &pars, DiffOpType d = _id) const#

parametrization c+(a-c)cos(t)+(b-c)sin(t)

inverse of parametrization of p = c+(a-c)cos(s)+(b-c)sin(s) with s = thetamin+ t*(thetamax-thetamin), t in [0,1]

inline virtual EllArc &homothetize(const Parameter &p1)#

apply a homothety on a EllArc (1 key)

inline virtual EllArc &homothetize(const Parameter &p1, const Parameter &p2)#

apply a homothety on a EllArc (2 keys)

inline virtual EllArc &homothetize(const Point &c = Point(0., 0., 0.), real_t factor = 1.)#

apply a homothety on a EllArc

inline virtual EllArc &homothetize(real_t factor)#

apply a homothety on a EllArc

Vector<real_t> invParametrization(const Point &pt, Parameters &pars, DiffOpType d = _id) const#

inverse of parametrization c+(a-c)cos(t)+(b-c)sin(t)

inline virtual bool isPlane() const#

return true if geometry is plane

inline virtual number_t nbSides() const#

returns the number of sides

virtual std::vector<Point*> nodes()#

returns list of every point (non const)

virtual std::vector<const Point*> nodes() const#

returns list of every point (const)

inline virtual EllArc &pointReflect(const Parameter &p1)#

apply a point reflection on a EllArc (1 key)

inline virtual EllArc &pointReflect(const Point &c = Point(0., 0., 0.))#

apply a point reflection on a EllArc

inline virtual EllArc &reflect2d(const Parameter &p1)#

apply a reflection2d on a EllArc (1 key)

inline virtual EllArc &reflect2d(const Parameter &p1, const Parameter &p2)#

apply a reflection2d on a EllArc (2 keys)

inline virtual EllArc &reflect2d(const Point &c, real_t dx, real_t dy = 0.)#

apply a reflection2d on a EllArc

inline virtual EllArc &reflect2d(const Point &c = Point(0., 0.), std::vector<real_t> d = std::vector<real_t>(2, 0.))#

apply a reflection2d on a EllArc

inline virtual EllArc &reflect3d(const Parameter &p1)#

apply a reflection3d on a EllArc (1 key)

inline virtual EllArc &reflect3d(const Parameter &p1, const Parameter &p2)#

apply a reflection3d on a EllArc (2 keys)

inline virtual EllArc &reflect3d(const Point &c, real_t nx, real_t ny, real_t nz = 0.)#

apply a reflection3d on a EllArc

inline virtual EllArc &reflect3d(const Point &c = Point(0., 0., 0.), std::vector<real_t> n = std::vector<real_t>(3, 0.))#

apply a reflection3d on a EllArc

EllArc &reverse()#

reverse orientation of arc

inline virtual EllArc &rotate2d(const Parameter &p1)#

apply a rotation 2D on a EllArc (1 key)

inline virtual EllArc &rotate2d(const Parameter &p1, const Parameter &p2)#

apply a rotation 2D on a EllArc (2 keys)

inline virtual EllArc &rotate2d(const Point &c, real_t angle = 0.)#

apply a rotation 2D on a EllArc

inline virtual EllArc &rotate3d(const Parameter &p1)#

apply a rotation 3D on a EllArc (1 key)

inline virtual EllArc &rotate3d(const Parameter &p1, const Parameter &p2)#

apply a rotation 3D on a EllArc (2 keys)

inline virtual EllArc &rotate3d(const Parameter &p1, const Parameter &p2, const Parameter &p3)#

apply a rotation 3D on a EllArc (3 keys)

inline virtual EllArc &rotate3d(const Point &c, real_t dx, real_t dy, real_t angle)#

apply a rotation on a EllArc

inline virtual EllArc &rotate3d(const Point &c, real_t dx, real_t dy, real_t dz, real_t angle)#

apply a rotation on a EllArc

inline virtual EllArc &rotate3d(const Point &c, std::vector<real_t> d = std::vector<real_t>(3, 0.), real_t angle = 0.)#

apply a rotation 3D on a EllArc

inline virtual EllArc &rotate3d(real_t dx, real_t dy, real_t angle)#

apply a rotation 3D on a EllArc

inline virtual EllArc &rotate3d(real_t dx, real_t dy, real_t dz, real_t angle)#

apply a rotation 3D on a EllArc

virtual EllArc &transform(const Transformation &t)#

apply a geometrical transformation on a EllArc

inline virtual EllArc &translate(const Parameter &p1)#

apply a translation on a EllArc (1 key)

inline virtual EllArc &translate(real_t ux, real_t uy = 0., real_t uz = 0.)#

apply a translation on a EllArc (3 reals version)

inline virtual EllArc &translate(std::vector<real_t> u)#

apply a translation on a EllArc (vector version)