Class xlifepp::EllArc#
-
class EllArc : public xlifepp::Curve#
-
Inheritence diagram for xlifepp::EllArc:
Collaboration diagram for xlifepp::EllArc:
definition of an elliptic arc geometry in R^3 (curve)
EllArc constructors are based on a key-value system. Here are the available keys:
_center: to define the center of the ellipse supporting the arc
_apogee: to define the apogee of the ellipse supporting the arc
_v1, _v2: to define the bounds of the arc
_nnodes: to define the number of nodes on the arc
_hsteps: to define the local mesh steps on the bounds of the arc
_domain_name: to define the domain name
_side_names: to define the side names
_varnames: to define the variable names for print purpose
Public Functions
-
EllArc()#
-
default constructor with side names
default ellipse arc is quarter of circle of center (0,0,0) and radius 1
-
EllArc(Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5)#
-
constructor with 5 Parameter
-
EllArc(Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5, Parameter p6)#
-
constructor with 6 Parameter
-
EllArc(Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5, Parameter p6, Parameter p7)#
-
constructor with 7 Parameter
-
inline virtual ~EllArc()#
-
destructor
-
virtual string_t asString() const#
-
format as string
-
virtual void computeBAndAngles()#
-
compute the second apogee
-
virtual void computeBB()#
-
compute the bounding box
-
virtual void computeMB()#
-
computes the minimal box
-
virtual std::vector<std::pair<ShapeType, std::vector<const Point*>>> curves() const#
-
returns list of curves (const)
-
Vector<real_t> funParametrization(const Point &pt, Parameters &pars, DiffOpType d = _id) const#
-
parametrization c+(a-c)cos(t)+(b-c)sin(t)
inverse of parametrization of p = c+(a-c)cos(s)+(b-c)sin(s) with s = thetamin+ t*(thetamax-thetamin), t in [0,1]
-
inline virtual EllArc &homothetize(const Parameter &p1, const Parameter &p2)#
-
apply a homothety on a EllArc (2 keys)
-
inline virtual EllArc &homothetize(const Point &c = Point(0., 0., 0.), real_t factor = 1.)#
-
apply a homothety on a EllArc
-
Vector<real_t> invParametrization(const Point &pt, Parameters &pars, DiffOpType d = _id) const#
-
inverse of parametrization c+(a-c)cos(t)+(b-c)sin(t)
-
inline virtual bool isPlane() const#
-
return true if geometry is plane
-
inline virtual EllArc &pointReflect(const Parameter &p1)#
-
apply a point reflection on a EllArc (1 key)
-
inline virtual EllArc &pointReflect(const Point &c = Point(0., 0., 0.))#
-
apply a point reflection on a EllArc
-
inline virtual EllArc &reflect2d(const Parameter &p1, const Parameter &p2)#
-
apply a reflection2d on a EllArc (2 keys)
-
inline virtual EllArc &reflect2d(const Point &c, real_t dx, real_t dy = 0.)#
-
apply a reflection2d on a EllArc
-
inline virtual EllArc &reflect2d(const Point &c = Point(0., 0.), std::vector<real_t> d = std::vector<real_t>(2, 0.))#
-
apply a reflection2d on a EllArc
-
inline virtual EllArc &reflect3d(const Parameter &p1, const Parameter &p2)#
-
apply a reflection3d on a EllArc (2 keys)
-
inline virtual EllArc &reflect3d(const Point &c, real_t nx, real_t ny, real_t nz = 0.)#
-
apply a reflection3d on a EllArc
-
inline virtual EllArc &reflect3d(const Point &c = Point(0., 0., 0.), std::vector<real_t> n = std::vector<real_t>(3, 0.))#
-
apply a reflection3d on a EllArc
-
inline virtual EllArc &rotate2d(const Parameter &p1, const Parameter &p2)#
-
apply a rotation 2D on a EllArc (2 keys)
-
inline virtual EllArc &rotate3d(const Parameter &p1, const Parameter &p2)#
-
apply a rotation 3D on a EllArc (2 keys)
-
inline virtual EllArc &rotate3d(const Parameter &p1, const Parameter &p2, const Parameter &p3)#
-
apply a rotation 3D on a EllArc (3 keys)
-
inline virtual EllArc &rotate3d(const Point &c, real_t dx, real_t dy, real_t angle)#
-
apply a rotation on a EllArc
-
inline virtual EllArc &rotate3d(const Point &c, real_t dx, real_t dy, real_t dz, real_t angle)#
-
apply a rotation on a EllArc
-
inline virtual EllArc &rotate3d(const Point &c, std::vector<real_t> d = std::vector<real_t>(3, 0.), real_t angle = 0.)#
-
apply a rotation 3D on a EllArc
-
inline virtual EllArc &rotate3d(real_t dx, real_t dy, real_t angle)#
-
apply a rotation 3D on a EllArc
-
inline virtual EllArc &rotate3d(real_t dx, real_t dy, real_t dz, real_t angle)#
-
apply a rotation 3D on a EllArc
-
virtual EllArc &transform(const Transformation &t)#
-
apply a geometrical transformation on a EllArc