Inheritence diagram for xlifepp::CollinoIM:
digraph {
graph [bgcolor="#00000000"]
node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2]
edge [color="#1414CE"]
"1" [label="xlifepp::CollinoIM" tooltip="xlifepp::CollinoIM" fillcolor="#BFBFBF"]
"2" [label="xlifepp::DoubleIM" tooltip="xlifepp::DoubleIM"]
"3" [label="xlifepp::IntegrationMethod" tooltip="xlifepp::IntegrationMethod"]
"1" -> "2" [dir=forward tooltip="public-inheritance"]
"2" -> "3" [dir=forward tooltip="public-inheritance"]
}
Collaboration diagram for xlifepp::CollinoIM:
digraph {
graph [bgcolor="#00000000"]
node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2]
edge [color="#1414CE"]
"1" [label="xlifepp::CollinoIM" tooltip="xlifepp::CollinoIM" fillcolor="#BFBFBF"]
"2" [label="xlifepp::DoubleIM" tooltip="xlifepp::DoubleIM"]
"3" [label="xlifepp::IntegrationMethod" tooltip="xlifepp::IntegrationMethod"]
"1" -> "2" [dir=forward tooltip="public-inheritance"]
"2" -> "3" [dir=forward tooltip="public-inheritance"]
}
integral over a product of triangles for Maxwell IE using a method developped by F.
Collino compute for Raviart-Thomas basis of order 1 (RT0!) the following integrals I1 = intg_SxT k*G(x,y)[ wi(x).wj(y)-1/k2 div(wi(x)div(wj(y) ] I2 = intg_SxT (grad_y G(x,y) x wj(y)).wi(x)
Public Functions
inline CollinoIM ( )
default constructor
inline CollinoIM ( ComputeIntgFlag cf , number_t otf , number_t otn , number_t osn , real_t e )
full constructor
inline CollinoIM ( const CollinoIM & cim )
copy constructor
inline ~CollinoIM ( )
destructor
inline CollinoIM & operator = ( const CollinoIM & cim )
assign operator
inline virtual void print ( std :: ostream & os ) const
print IntegrationMethod on stream
inline virtual std :: list < Quadrature * > quadratures ( ) const
return the list of (single) quadratures in a list
Public Members
ComputeIntgFlag computeFlag
tells what integrals have to be computed (default compute I1)
real_t eta
parameter in element distance criteria
number_t ordSNear
order of quadrature for a segment (near case, default 12)
number_t ordTFar
order of quadrature for far triangles (default 3)
number_t ordTNear
order of quadrature for a triangle (near case, default 64)