Class xlifepp::CollinoIM#

class CollinoIM : public xlifepp::DoubleIM#

Inheritence diagram for xlifepp::CollinoIM:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "1" [label="xlifepp::CollinoIM" tooltip="xlifepp::CollinoIM" fillcolor="#BFBFBF"] "2" [label="xlifepp::DoubleIM" tooltip="xlifepp::DoubleIM"] "3" [label="xlifepp::IntegrationMethod" tooltip="xlifepp::IntegrationMethod"] "1" -> "2" [dir=forward tooltip="public-inheritance"] "2" -> "3" [dir=forward tooltip="public-inheritance"] }

Collaboration diagram for xlifepp::CollinoIM:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "1" [label="xlifepp::CollinoIM" tooltip="xlifepp::CollinoIM" fillcolor="#BFBFBF"] "2" [label="xlifepp::DoubleIM" tooltip="xlifepp::DoubleIM"] "3" [label="xlifepp::IntegrationMethod" tooltip="xlifepp::IntegrationMethod"] "1" -> "2" [dir=forward tooltip="public-inheritance"] "2" -> "3" [dir=forward tooltip="public-inheritance"] }

integral over a product of triangles for Maxwell IE using a method developped by F.

Collino compute for Raviart-Thomas basis of order 1 (RT0!) the following integrals I1 = intg_SxT k*G(x,y)[ wi(x).wj(y)-1/k2 div(wi(x)div(wj(y) ] I2 = intg_SxT (grad_y G(x,y) x wj(y)).wi(x)

Public Functions

inline CollinoIM()#

default constructor

inline CollinoIM(ComputeIntgFlag cf, number_t otf, number_t otn, number_t osn, real_t e)#

full constructor

inline CollinoIM(const CollinoIM &cim)#

copy constructor

inline ~CollinoIM()#

destructor

inline CollinoIM &operator=(const CollinoIM &cim)#

assign operator

inline virtual void print(std::ostream &os) const#

print IntegrationMethod on stream

inline virtual std::list<Quadrature*> quadratures() const#

return the list of (single) quadratures in a list

Public Members

ComputeIntgFlag computeFlag#

tells what integrals have to be computed (default compute I1)

real_t eta#

parameter in element distance criteria

number_t ordSNear#

order of quadrature for a segment (near case, default 12)

number_t ordTFar#

order of quadrature for far triangles (default 3)

number_t ordTNear#

order of quadrature for a triangle (near case, default 64)