Class xlifepp::FeSpace#
-
class FeSpace : public xlifepp::Space#
-
Inheritence diagram for xlifepp::FeSpace:
Collaboration diagram for xlifepp::FeSpace:
defines general data of a finite element space.
FeSpace class is not directly exposed to end users
Public Functions
-
FeSpace(const GeomDomain &gd, const Interpolation &in, const string_t &na, bool opt = true, bool withLocateData = true)#
-
constructor from GeomDomain and Interpolation(s)
-
void addToBcDof(BCDof*, FeDof&, number_t, std::list<GeoNumPair>&, number_t, const Point&, const Point&, GeomElement*, int rev = 1)#
-
tool for buildBCRTSpace()
tools for FeSpace:: buildBCRTSpace() add to the BC dof located on side s of element gelt, the parts of shape basis related to one vertex of an edge bcd: BcDof fed: FeDof s: side number elts: list of elements (counterclockwise) connected to the vertex (vnum) of side s X: middle point of side s gelt: related geometric element rev: reverse order vertex not on the boundary
-
void addToBcDofBoundary(BCDof*, FeDof&, number_t, std::list<GeoNumPair>&, number_t, const Point&, const Point&, GeomElement*, int rev = 1)#
-
tool for buildBCRTSpace()
tools for FeSpace:: buildBCRTSpace() add to the BC dof located on side s of element gelt, the parts of shape basis related to one vertex of an edge elts is the list of elements (counterclockwise) connected to the vertex (vnum) of side s and X is the middle point of side s vertex on the boundary
-
void buildBCRTSpace()#
-
special construction of BuffaChristiansen-RT space
buildBCRTSpace: special construction of BuffaChristiansen-RT space from F.P.
Andriulli, K.f Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen and E. Michielssen A Multiplicative Calderon Preconditioner for the Electric Field Integral Equation IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 56, NO. 8, AUGUST 2008 and XLiFE++ documentation
-
virtual void builddofid2rank() const#
-
construct the map dofid2rank from dofs list
construct the map dofid2rank from dofs list, ranks start from 1
-
void buildElements()#
-
construct the list of elements
-
void buildFeDofs()#
-
construct the list of FeDofs
buildFeDofs: create FeDofs of FeSpace defined by a mesh domain and an interpolation algorithm: for Discontinuous Galerkin interpolation (_L2 space comforming), all local dofs are global dofs for “continuous” approximation with sharable dofs the algorithm travels the list of elements on each element, local dofs are indexed along a DofKey object wich uniquely determines a global dof: vertex dof: V + global mesh vertex number side dof: S + ascending global mesh numbers of side vertices + local dof number side of side dof: E + “ascending” global mesh numbers of side vertices + local dof number internal or not sharable dof: not indexed thus, a global dof is created from a local dof if it is not already indexed or if it is a non sharable dof
NOTE: algorithm of this new version is more general than the previous one it works by using a loop on ref dofs of ref elements while the old one using a loop on vertices, edges, faces and non sharable dofs Now all the dof informations are provided by refdof and not by refdof and refelement that leads to a more general and compact algorithm, probably more efficient !
-
virtual void buildgelt2elt() const#
-
construct the map gelt2elt from elements list
buildgelt2elt: construct the map gelt2elt from elements list
-
inline virtual const std::map<number_t, number_t> &dofid2rank() const#
-
return the map dof to rank, built on fly
-
virtual std::vector<number_t> dofsOn(const GeomDomain&, int_t ord = -1, dimen_t dim = 0, ProjectionType = _noProjection) const#
-
return the set of dof numbers of dofs “located” on a domain: when a plain domain, return all the dofs when a side domain, return only dofs with support in the side domain when a side of side domain, return only dofs with support in the side of side domain
filter dofs along some characteristics (see Refdof class): order_: order of a derivative D.o.F or a moment D.o.F (0) supportDim_: dimension of the D.o.F geometric support (0 point, 1 segment, …) projectionType_: type of projection (_noProjection , _givenProjection, _dotnProjection, _crossnProjection)
order = -1 means all dofs
NOTE: this function is useful when the restriction of FeSpace on a side does not define a FeSubSpace for instance, this is the case for Raviart, Nedelec space where the trace on a side domain is not a finite element space
-
virtual const Element &element(GeomElement *gelt) const#
-
access to element associated to a geomelement
-
inline virtual const Element &element(number_t k) const#
-
access to k-th (k>=0) element (pointer) for FESpace and FESubspace only
-
virtual const Element *element_p(GeomElement *gelt) const#
-
access to element associated to a geomelement
return element linked to a given geom element used gelt2elt map; has to be already built
-
inline virtual const Element *element_p(number_t k) const#
-
access to k-th (k>=0) element (pointer) for FESpace and FESubspace only
-
inline virtual const std::vector<number_t> &elementDofs(number_t k) const#
-
access to dofs ranks (local numbering) of k-th (>=0) element for FESpace and FESubspace only
-
inline virtual std::vector<number_t> elementParentDofs(number_t k) const#
-
access to dofs ranks (parent numbering, same as local) of k-th (>=0) element for FESpace and FESubspace only
-
virtual bool extensionRequired() const#
-
true if space has no trace space
true if trace space cannot be defined from trace of FE on side, case of edge FE
-
Graph graphOfDofs()#
-
return the set of dof numbers of dofs “located” on a domain
create dof connection graph
-
template<typename T, typename K>
T &interpolate(const Vector<K>&, const Point&, T&, DiffOpType = _id, bool useNearest = false) const#
-
compute interpolation value at P
-
inline virtual const Interpolation *interpolation() const#
-
return pointer to interpolation
-
virtual bool isFE() const#
-
true if FE space or FeSubspace
-
virtual bool isSpectral() const#
-
true if spectral space
-
virtual Dof &locateDof(const Point&) const#
-
locate Lagrange dof nearest a given point
locate Lagrange dof nearest of a given point
-
const Element *locateElement(const Point &P, bool useNearest = false, bool errorOnOutDom = true, real_t tol = theLocateToleranceFactor) const#
-
locate element of the Fespace containing P
-
number_t maxDegree() const#
-
max degree of polynomials involved by shape functions
max degree of polynomials involved by shape functions if not polynomial return a default degree 5
-
virtual number_t numElement(GeomElement *gelt) const#
-
access to element number associated to a geomelement
access to element number associated to a geomelement if not found return the size of gelt2elt (number of elements)
-
virtual void print(std::ostream&) const#
-
print utility
-
inline virtual const std::set<RefElement*> &refElements() const#
-
access to set of pointer to RefElement (refElts) involved in FESpace
Public Members
-
mutable std::map<GeomElement*, number_t> gelt2elt#
-
map GeomElement -> element number (useful to interpolation tools)
-
std::set<RefElement*> refElts#
-
set of pointer to RefElement involved in FeSpace (usually one)
-
FeSpace(const GeomDomain &gd, const Interpolation &in, const string_t &na, bool opt = true, bool withLocateData = true)#