Class xlifepp::SplineSurface#

class SplineSurface : public xlifepp::Surface#

Inheritence diagram for xlifepp::SplineSurface:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "3" [label="xlifepp::Geometry" tooltip="xlifepp::Geometry"] "1" [label="xlifepp::SplineSurface" tooltip="xlifepp::SplineSurface" fillcolor="#BFBFBF"] "2" [label="xlifepp::Surface" tooltip="xlifepp::Surface"] "1" -> "2" [dir=forward tooltip="public-inheritance"] "2" -> "3" [dir=forward tooltip="public-inheritance"] }

Collaboration diagram for xlifepp::SplineSurface:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "22" [label="xlifepp::Collection< string_t >" tooltip="xlifepp::Collection< string_t >"] "15" [label="xlifepp::Matrix< real_t >" tooltip="xlifepp::Matrix< real_t >"] "19" [label="xlifepp::Vector< real_t >" tooltip="xlifepp::Vector< real_t >"] "30" [label="xlifepp::Vector< xlifepp::Vector< real_t > >" tooltip="xlifepp::Vector< xlifepp::Vector< real_t > >"] "39" [label="std::list< std::pair< number_t, real_t > >" tooltip="std::list< std::pair< number_t, real_t > >"] "11" [label="std::map< number_t, std::vector< number_t > >" tooltip="std::map< number_t, std::vector< number_t > >"] "9" [label="std::map< number_t, xlifepp::Geometry * >" tooltip="std::map< number_t, xlifepp::Geometry * >"] "38" [label="std::map< string_t, number_t >" tooltip="std::map< string_t, number_t >"] "43" [label="std::multimap< real_t, number_t >" tooltip="std::multimap< real_t, number_t >"] "40" [label="std::list< T >" tooltip="std::list< T >"] "10" [label="std::map< K, T >" tooltip="std::map< K, T >"] "44" [label="std::multimap< K, T >" tooltip="std::multimap< K, T >"] "6" [label="std::vector< T >" tooltip="std::vector< T >"] "25" [label="std::vector< T >" tooltip="std::vector< T >"] "18" [label="std::vector< K >" tooltip="std::vector< K >"] "5" [label="std::vector< RealPair >" tooltip="std::vector< RealPair >"] "21" [label="std::vector< const xlifepp::Transformation * >" tooltip="std::vector< const xlifepp::Transformation * >"] "26" [label="std::vector< number_t >" tooltip="std::vector< number_t >"] "16" [label="std::vector< real_t >" tooltip="std::vector< real_t >"] "35" [label="std::vector< std::vector< GeoNumPair > >" tooltip="std::vector< std::vector< GeoNumPair > >"] "12" [label="std::vector< std::vector< int_t > >" tooltip="std::vector< std::vector< int_t > >"] "23" [label="std::vector< string_t >" tooltip="std::vector< string_t >"] "34" [label="std::vector< xlifepp::GeomDomain * >" tooltip="std::vector< xlifepp::GeomDomain * >"] "33" [label="std::vector< xlifepp::GeomElement * >" tooltip="std::vector< xlifepp::GeomElement * >"] "37" [label="std::vector< xlifepp::Parameter * >" tooltip="std::vector< xlifepp::Parameter * >"] "8" [label="std::vector< xlifepp::Point >" tooltip="std::vector< xlifepp::Point >"] "27" [label="std::vector< xlifepp::Transformation * >" tooltip="std::vector< xlifepp::Transformation * >"] "31" [label="std::vector< xlifepp::Vector< real_t > >" tooltip="std::vector< xlifepp::Vector< real_t > >"] "4" [label="xlifepp::BoundingBox" tooltip="xlifepp::BoundingBox"] "24" [label="xlifepp::Collection< T >" tooltip="xlifepp::Collection< T >"] "13" [label="xlifepp::ExtrusionData" tooltip="xlifepp::ExtrusionData"] "41" [label="xlifepp::GeoNode" tooltip="xlifepp::GeoNode"] "3" [label="xlifepp::Geometry" tooltip="xlifepp::Geometry"] "17" [label="xlifepp::Matrix< K >" tooltip="xlifepp::Matrix< K >"] "32" [label="xlifepp::Mesh" tooltip="xlifepp::Mesh"] "7" [label="xlifepp::MinimalBox" tooltip="xlifepp::MinimalBox"] "36" [label="xlifepp::Parameters" tooltip="xlifepp::Parameters"] "29" [label="xlifepp::Parametrization" tooltip="xlifepp::Parametrization"] "28" [label="xlifepp::Point" tooltip="xlifepp::Point"] "42" [label="xlifepp::Spline" tooltip="xlifepp::Spline"] "1" [label="xlifepp::SplineSurface" tooltip="xlifepp::SplineSurface" fillcolor="#BFBFBF"] "2" [label="xlifepp::Surface" tooltip="xlifepp::Surface"] "14" [label="xlifepp::Transformation" tooltip="xlifepp::Transformation"] "20" [label="xlifepp::Vector< K >" tooltip="xlifepp::Vector< K >"] "22" -> "23" [dir=forward tooltip="public-inheritance"] "22" -> "24" [dir=forward tooltip="template-instance"] "15" -> "16" [dir=forward tooltip="public-inheritance"] "15" -> "17" [dir=forward tooltip="template-instance"] "19" -> "16" [dir=forward tooltip="public-inheritance"] "19" -> "20" [dir=forward tooltip="template-instance"] "30" -> "31" [dir=forward tooltip="public-inheritance"] "30" -> "20" [dir=forward tooltip="template-instance"] "39" -> "40" [dir=forward tooltip="template-instance"] "11" -> "10" [dir=forward tooltip="template-instance"] "9" -> "10" [dir=forward tooltip="template-instance"] "38" -> "10" [dir=forward tooltip="template-instance"] "43" -> "44" [dir=forward tooltip="template-instance"] "18" -> "6" [dir=forward tooltip="template-instance"] "5" -> "6" [dir=forward tooltip="template-instance"] "21" -> "6" [dir=forward tooltip="template-instance"] "26" -> "6" [dir=forward tooltip="template-instance"] "16" -> "6" [dir=forward tooltip="template-instance"] "35" -> "6" [dir=forward tooltip="template-instance"] "12" -> "6" [dir=forward tooltip="template-instance"] "23" -> "6" [dir=forward tooltip="template-instance"] "34" -> "6" [dir=forward tooltip="template-instance"] "33" -> "6" [dir=forward tooltip="template-instance"] "37" -> "6" [dir=forward tooltip="template-instance"] "8" -> "6" [dir=forward tooltip="template-instance"] "27" -> "6" [dir=forward tooltip="template-instance"] "31" -> "6" [dir=forward tooltip="template-instance"] "4" -> "5" [dir=forward tooltip="usage"] "24" -> "25" [dir=forward tooltip="public-inheritance"] "13" -> "14" [dir=forward tooltip="usage"] "13" -> "22" [dir=forward tooltip="usage"] "13" -> "26" [dir=forward tooltip="usage"] "13" -> "16" [dir=forward tooltip="usage"] "13" -> "19" [dir=forward tooltip="usage"] "13" -> "27" [dir=forward tooltip="usage"] "13" -> "28" [dir=forward tooltip="usage"] "41" -> "41" [dir=forward tooltip="usage"] "41" -> "3" [dir=forward tooltip="usage"] "3" -> "4" [dir=forward tooltip="usage"] "3" -> "7" [dir=forward tooltip="usage"] "3" -> "9" [dir=forward tooltip="usage"] "3" -> "11" [dir=forward tooltip="usage"] "3" -> "12" [dir=forward tooltip="usage"] "3" -> "13" [dir=forward tooltip="usage"] "3" -> "29" [dir=forward tooltip="usage"] "3" -> "3" [dir=forward tooltip="usage"] "3" -> "41" [dir=forward tooltip="usage"] "17" -> "18" [dir=forward tooltip="public-inheritance"] "32" -> "3" [dir=forward tooltip="usage"] "32" -> "8" [dir=forward tooltip="usage"] "32" -> "33" [dir=forward tooltip="usage"] "32" -> "34" [dir=forward tooltip="usage"] "32" -> "26" [dir=forward tooltip="usage"] "32" -> "35" [dir=forward tooltip="usage"] "32" -> "32" [dir=forward tooltip="usage"] "7" -> "8" [dir=forward tooltip="usage"] "36" -> "37" [dir=forward tooltip="usage"] "36" -> "38" [dir=forward tooltip="usage"] "29" -> "3" [dir=forward tooltip="usage"] "29" -> "19" [dir=forward tooltip="usage"] "29" -> "30" [dir=forward tooltip="usage"] "29" -> "32" [dir=forward tooltip="usage"] "29" -> "36" [dir=forward tooltip="usage"] "29" -> "39" [dir=forward tooltip="usage"] "28" -> "16" [dir=forward tooltip="public-inheritance"] "42" -> "8" [dir=forward tooltip="usage"] "42" -> "43" [dir=forward tooltip="usage"] "42" -> "16" [dir=forward tooltip="usage"] "42" -> "29" [dir=forward tooltip="usage"] "1" -> "2" [dir=forward tooltip="public-inheritance"] "1" -> "42" [dir=forward tooltip="usage"] "2" -> "3" [dir=forward tooltip="public-inheritance"] "2" -> "8" [dir=forward tooltip="usage"] "2" -> "16" [dir=forward tooltip="usage"] "2" -> "26" [dir=forward tooltip="usage"] "14" -> "15" [dir=forward tooltip="usage"] "14" -> "19" [dir=forward tooltip="usage"] "14" -> "21" [dir=forward tooltip="usage"] "20" -> "18" [dir=forward tooltip="public-inheritance"] }

definition of a SplineSurface geometry in R^3 from a Nurbs object (non uniform rational Bspline) only nurbs are available either approximation nurbs or interpolation nurbs (default when subtype is not specified)

SplineSurface constructors are based on a key-value system. Here are the available keys:

  • _vertices: list of control points

  • _spline: spline object

  • _spline_type: type of spline one of _C2Spline, _CatmullRomSpline, _BSpline, _BezierSpline, _Nurbs

  • _spline_subtype: subtype of spline, one of _SplineInterpolation, _SplineApproximation

  • _spline_BC: spline boundary condition, one of _naturalBC, _clampedBC, _periodicBC

  • _degree: degree of spline (default 3)

  • _nbu: number of control/interpolation points in u-direction (_Nurbs only)

  • _spline_parametrization: spline parametrization type, one of _xParametrization, _uniformParametrization,_chordalParametrization, _centripetalParametrization

  • _weights: weights of control points (for _BSpline only)

  • _nnodes: to define the number of nodes on the arc

  • _hsteps: to define the local mesh steps on the bounds

  • _domain_name: to define the domain name

  • _side_names: to define the side names

  • _varnames: to define the variable names for print purpose

Public Functions

SplineSurface()#

default constructor

default is a void SplineSurface (spline_=0)

SplineSurface(const SplineSurface&)#

copy constructor

SplineSurface(Parameter p1)#

constructor with Parameters

virtual ~SplineSurface()#

destructor

virtual string_t asString() const#

format as string

virtual Geometry &buildBoundary() const#

create boundary geometry of SplineSurface (composite of SplineArc (BSpline))

create boundary geometry of SplineSurface (nurbs), a composite geometry of 4 SplineArc defined from BSpline with the following weights and control points built from weights and control points of Nurbs wi = sum_j wij.Bjq(v) and Pi=sum_j wij.Bjq(v)Pij/wi v=0 or v=1 wj = sum_i wij.Bip(u) and Pi=sum_i wij.Bip(u)Pij/wi u=0 or u=1 note that when wij=1 for any i,j, wi=wj=1 for any i,j

interface to nurbs parametrization (u,v in [0,1])

inline virtual Geometry *clone() const#

virtual copy constructor for Geometry

inline virtual Surface *cloneS() const#

virtual copy constructor for Geometry

virtual copy constructor for Surface

void copy(const SplineSurface&)#

real copy

copy tool (hard copy)

Vector<real_t> funParametrization(const Point &pt, Parameters &pars, DiffOpType d = _id) const#

interface to spline parametrization

inverse of parametrization

inline virtual SplineSurface &homothetize(const Parameter &p1)#

apply a homothety on a SplineSurface (1 key)

inline virtual SplineSurface &homothetize(const Parameter &p1, const Parameter &p2)#

apply a homothety on a SplineSurface (2 keys)

inline virtual SplineSurface &homothetize(const Point &c = Point(0., 0., 0.), real_t factor = 1.)#

apply a homothety on a SplineSurface

inline virtual SplineSurface &homothetize(real_t factor)#

apply a homothety on a SplineSurface

Vector<real_t> invParametrization(const Point &pt, Parameters &pars, DiffOpType d = _id) const#

interface to spline parametrization

SplineSurface &operator=(const SplineSurface&)#

assign operator

inline virtual SplineSurface &pointReflect(const Parameter &p1)#

apply a point reflection on a SplineSurface (1 key)

inline virtual SplineSurface &pointReflect(const Point &c = Point(0., 0., 0.))#

apply a point reflection on a SplineSurface

inline virtual SplineSurface &reflect2d(const Parameter &p1)#

apply a reflection2d on a SplineSurface (1 key)

inline virtual SplineSurface &reflect2d(const Parameter &p1, const Parameter &p2)#

apply a reflection2d on a SplineSurface (2 keys)

inline virtual SplineSurface &reflect2d(const Point &c, real_t dx, real_t dy = 0.)#

apply a reflection2d on a SplineSurface

inline virtual SplineSurface &reflect2d(const Point &c = Point(0., 0.), std::vector<real_t> d = std::vector<real_t>(2, 0.))#

apply a reflection2d on a SplineSurface

inline virtual SplineSurface &reflect3d(const Parameter &p1)#

apply a reflection3d on a SplineSurface (1 key)

inline virtual SplineSurface &reflect3d(const Parameter &p1, const Parameter &p2)#

apply a reflection3d on a SplineSurface (2 keys)

inline virtual SplineSurface &reflect3d(const Point &c, real_t nx, real_t ny, real_t nz = 0.)#

apply a reflection3d on a SplineSurface

inline virtual SplineSurface &reflect3d(const Point &c = Point(0., 0., 0.), std::vector<real_t> n = std::vector<real_t>(3, 0.))#

apply a reflection3d on a SplineSurface

inline virtual SplineSurface &rotate2d(const Parameter &p1)#

apply a rotation 2D on a SplineSurface (1 key)

inline virtual SplineSurface &rotate2d(const Parameter &p1, const Parameter &p2)#

apply a rotation 2D on a SplineSurface (2 keys)

inline virtual SplineSurface &rotate2d(const Point &c, real_t angle = 0.)#

apply a rotation 2D on a SplineSurface

inline virtual SplineSurface &rotate3d(const Parameter &p1)#

apply a rotation 3D on a SplineSurface (1 key)

inline virtual SplineSurface &rotate3d(const Parameter &p1, const Parameter &p2)#

apply a rotation 3D on a SplineSurface (2 keys)

inline virtual SplineSurface &rotate3d(const Parameter &p1, const Parameter &p2, const Parameter &p3)#

apply a rotation 3D on a SplineSurface (3 keys)

inline virtual SplineSurface &rotate3d(const Point &c, real_t dx, real_t dy, real_t angle)#

apply a rotation on a SplineSurface

inline virtual SplineSurface &rotate3d(const Point &c, real_t dx, real_t dy, real_t dz, real_t angle)#

apply a rotation on a SplineSurface

inline virtual SplineSurface &rotate3d(const Point &c, std::vector<real_t> d = std::vector<real_t>(3, 0.), real_t angle = 0.)#

apply a rotation 3D on a SplineSurface

inline virtual SplineSurface &rotate3d(real_t dx, real_t dy, real_t angle)#

apply a rotation 3D on a SplineSurface

inline virtual SplineSurface &rotate3d(real_t dx, real_t dy, real_t dz, real_t angle)#

apply a rotation 3D on a SplineSurface

inline virtual SplineSurface *splineSurface()#

access to child SplineSurface object

inline virtual const SplineSurface *splineSurface() const#

access to child SplineSurface object (const)

virtual SplineSurface &transform(const Transformation &t)#

apply a geometrical transformation on a SplineSurface

apply a geometrical transformation to a SplineSurface

inline virtual SplineSurface &translate(const Parameter &p1)#

apply a translation on a SplineSurface (1 key)

inline virtual SplineSurface &translate(real_t ux, real_t uy = 0., real_t uz = 0.)#

apply a translation on a SplineSurface (3 reals version)

inline virtual SplineSurface &translate(std::vector<real_t> u)#

apply a translation on a SplineSurface (vector version)