Class xlifepp::Parallelepiped#
-
class Parallelepiped : public xlifepp::Hexahedron#
-
Inheritence diagram for xlifepp::Parallelepiped:
Collaboration diagram for xlifepp::Parallelepiped:
definition of a parallelepiped geometry in R^3
Parallelepiped constructors are based on a key-value system. Here are the available keys:
_v1, _v2, _v3, _v4, _v5, _v6, _v7, _v8: to define the vertices of the Parallelepiped (_v3, _v6, _v7, _v8 are optional)
_nnodes: to define the number of nodes on each edge of the Parallelepiped
_hsteps: to define the local mesh steps on the vertices of the Parallelepiped
_domain_name: to define the domain name
_side_names: to define the side names
_varnames: to define the variable names for print purpose
Subclassed by xlifepp::Cuboid
Public Functions
-
Parallelepiped()#
-
default constructor
-
Parallelepiped(const Parallelepiped &p)#
-
copy constructor
-
Parallelepiped(Parameter p1, Parameter p2, Parameter p3, Parameter p4)#
-
constructor with 4 Parameter
-
Parallelepiped(Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5)#
-
constructor with 5 Parameter
-
Parallelepiped(Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5, Parameter p6)#
-
constructor with 6 Parameter
-
Parallelepiped(Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5, Parameter p6, Parameter p7)#
-
constructor with 7 Parameter
-
Parallelepiped(Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5, Parameter p6, Parameter p7, Parameter p8)#
-
constructor with 8 Parameter
-
virtual string_t asString() const#
-
format as string
-
virtual void computeMB()#
-
computes the minimal box
-
inline virtual Parallelepiped &homothetize(const Parameter &p1)#
-
apply a homothety on a Parallelepiped (1 key)
-
inline virtual Parallelepiped &homothetize(const Parameter &p1, const Parameter &p2)#
-
apply a homothety on a Parallelepiped (2 keys)
-
inline virtual Parallelepiped &homothetize(const Point &c = Point(0., 0., 0.), real_t factor = 1.)#
-
apply a homothety on a Parallelepiped
-
inline virtual Parallelepiped &homothetize(real_t factor)#
-
apply a homothety on a Parallelepiped
-
virtual real_t measure() const#
-
return the length/area/volume of the geometry
-
inline virtual Parallelepiped *parallelepiped()#
-
access to child Parallelepiped object
-
inline virtual const Parallelepiped *parallelepiped() const#
-
access to child Parallelepiped object (const)
-
inline virtual Parallelepiped &pointReflect(const Parameter &p1)#
-
apply a point reflection on a Parallelepiped (1 key)
-
inline virtual Parallelepiped &pointReflect(const Point &c = Point(0., 0., 0.))#
-
apply a point reflection on a Parallelepiped
-
inline virtual Parallelepiped &reflect2d(const Parameter &p1)#
-
apply a reflection2d on a Parallelepiped (1 key)
-
inline virtual Parallelepiped &reflect2d(const Parameter &p1, const Parameter &p2)#
-
apply a reflection2d on a Parallelepiped (2 keys)
-
inline virtual Parallelepiped &reflect2d(const Point &c, real_t dx, real_t dy = 0.)#
-
apply a reflection2d on a Parallelepiped
-
inline virtual Parallelepiped &reflect2d(const Point &c = Point(0., 0.), std::vector<real_t> d = std::vector<real_t>(2, 0.))#
-
apply a reflection2d on a Parallelepiped
-
inline virtual Parallelepiped &reflect3d(const Parameter &p1)#
-
apply a reflection3d on a Parallelepiped (1 key)
-
inline virtual Parallelepiped &reflect3d(const Parameter &p1, const Parameter &p2)#
-
apply a reflection3d on a Parallelepiped (2 keys)
-
inline virtual Parallelepiped &reflect3d(const Point &c, real_t nx, real_t ny, real_t nz = 0.)#
-
apply a reflection3d on a Parallelepiped
-
inline virtual Parallelepiped &reflect3d(const Point &c = Point(0., 0., 0.), std::vector<real_t> n = std::vector<real_t>(3, 0.))#
-
apply a reflection3d on a Parallelepiped
-
inline virtual Parallelepiped &rotate2d(const Parameter &p1)#
-
apply a rotation 2D on a Parallelepiped (1 key)
-
inline virtual Parallelepiped &rotate2d(const Parameter &p1, const Parameter &p2)#
-
apply a rotation 2D on a Parallelepiped (2 keys)
-
inline virtual Parallelepiped &rotate2d(const Point &c, real_t angle = 0.)#
-
apply a rotation 2D on a Parallelepiped
-
inline virtual Parallelepiped &rotate3d(const Parameter &p1)#
-
apply a rotation 3D on a Parallelepiped (1 key)
-
inline virtual Parallelepiped &rotate3d(const Parameter &p1, const Parameter &p2)#
-
apply a rotation 3D on a Parallelepiped (2 keys)
-
inline virtual Parallelepiped &rotate3d(const Parameter &p1, const Parameter &p2, const Parameter &p3)#
-
apply a rotation 3D on a Parallelepiped (3 keys)
-
inline virtual Parallelepiped &rotate3d(const Point &c, real_t dx, real_t dy, real_t angle)#
-
apply a rotation on a Parallelepiped
-
inline virtual Parallelepiped &rotate3d(const Point &c, real_t dx, real_t dy, real_t dz, real_t angle)#
-
apply a rotation on a Parallelepiped
-
inline virtual Parallelepiped &rotate3d(const Point &c, std::vector<real_t> d = std::vector<real_t>(3, 0.), real_t angle = 0.)#
-
apply a rotation 3D on a Parallelepiped
-
inline virtual Parallelepiped &rotate3d(real_t dx, real_t dy, real_t angle)#
-
apply a rotation 3D on a Parallelepiped
-
inline virtual Parallelepiped &rotate3d(real_t dx, real_t dy, real_t dz, real_t angle)#
-
apply a rotation 3D on a Parallelepiped
-
virtual void setFaces()#
-
set the faces vector when built
-
virtual Parallelepiped &transform(const Transformation &t)#
-
apply a geometrical transformation on a Parallelepiped
-
inline virtual Parallelepiped &translate(const Parameter &p1)#
-
apply a translation on a Parallelepiped (1 key)
-
inline virtual Parallelepiped &translate(real_t ux, real_t uy = 0., real_t uz = 0.)#
-
apply a translation on a Parallelepiped (3 reals version)
-
inline virtual Parallelepiped &translate(std::vector<real_t> u)#
-
apply a translation on a Parallelepiped (vector version)