Class xlifepp::Malyuzhinets#
-
class Malyuzhinets#
-
Collaboration diagram for xlifepp::Malyuzhinets:
describes the class providing the computation of Malyuzhinets function involved in wedge diffraction
Public Functions
-
Malyuzhinets(real_t wa, int_t ng = 2, CalType qr = _laguerreCal, bool adapt = true)#
-
constructor
-
complex_t compute(complex_t z) const#
-
compute Malyuzhinets function at a point z
compute Malyuzhinets function at points zs
-
std::vector<complex_t> compute(const std::vector<complex_t> &zs, bool parallel = true) const#
-
compute Malyuzhinets function at points zs
-
complex_t integral(real_t t0, real_t tf, const complex_t &z) const#
-
integral at z
compute Malyuzhinets function at point z
-
std::vector<complex_t> integral(real_t t0, real_t tf, const std::vector<complex_t> &zs) const#
-
integral at zs
-
std::vector<complex_t> integrand(const std::vector<real_t> &ts, const complex_t &z) const#
-
integrand at (ts,z)
-
complex_t integrand(real_t t, const complex_t &z) const#
-
integrand at (t,z)
-
inline complex_t operator()(complex_t z) const#
-
< compute Malyuzhinets function at a point z
-
inline std::vector<complex_t> operator()(const std::vector<complex_t> &zs, bool parallel = true) const#
-
< compute Malyuzhinets function at points zs
Public Members
-
bool adaptive#
-
true* if local or global adaptive quadrature must be used
-
real_t eps#
-
relative tolerance when using adaptive quadrature (default 1E-4)
-
mutable std::vector<real_t> lagPoints#
-
to store Laguerre points
-
mutable std::vector<real_t> lagWeights#
-
to store Laguerre weights
-
Parameters pars#
-
internal parameters
-
real_t Phi#
-
wedge angle
-
mutable complex_t z_#
-
current z
-
Malyuzhinets(real_t wa, int_t ng = 2, CalType qr = _laguerreCal, bool adapt = true)#