Class xlifepp::Parallelogram#

class Parallelogram : public xlifepp::Quadrangle#

Inheritence diagram for xlifepp::Parallelogram:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "5" [label="xlifepp::Geometry" tooltip="xlifepp::Geometry"] "1" [label="xlifepp::Parallelogram" tooltip="xlifepp::Parallelogram" fillcolor="#BFBFBF"] "3" [label="xlifepp::Polygon" tooltip="xlifepp::Polygon"] "2" [label="xlifepp::Quadrangle" tooltip="xlifepp::Quadrangle"] "6" [label="xlifepp::Rectangle" tooltip="xlifepp::Rectangle"] "7" [label="xlifepp::SquareGeo" tooltip="xlifepp::SquareGeo"] "4" [label="xlifepp::Surface" tooltip="xlifepp::Surface"] "1" -> "2" [dir=forward tooltip="public-inheritance"] "3" -> "4" [dir=forward tooltip="public-inheritance"] "2" -> "3" [dir=forward tooltip="public-inheritance"] "6" -> "1" [dir=forward tooltip="public-inheritance"] "7" -> "6" [dir=forward tooltip="public-inheritance"] "4" -> "5" [dir=forward tooltip="public-inheritance"] }

Collaboration diagram for xlifepp::Parallelogram:

digraph { graph [bgcolor="#00000000"] node [shape=rectangle style=filled fillcolor="#FFFFFF" font=Helvetica padding=2] edge [color="#1414CE"] "24" [label="xlifepp::Collection< string_t >" tooltip="xlifepp::Collection< string_t >"] "17" [label="xlifepp::Matrix< real_t >" tooltip="xlifepp::Matrix< real_t >"] "21" [label="xlifepp::Vector< real_t >" tooltip="xlifepp::Vector< real_t >"] "32" [label="xlifepp::Vector< xlifepp::Vector< real_t > >" tooltip="xlifepp::Vector< xlifepp::Vector< real_t > >"] "41" [label="std::list< std::pair< number_t, real_t > >" tooltip="std::list< std::pair< number_t, real_t > >"] "13" [label="std::map< number_t, std::vector< number_t > >" tooltip="std::map< number_t, std::vector< number_t > >"] "11" [label="std::map< number_t, xlifepp::Geometry * >" tooltip="std::map< number_t, xlifepp::Geometry * >"] "40" [label="std::map< string_t, number_t >" tooltip="std::map< string_t, number_t >"] "42" [label="std::list< T >" tooltip="std::list< T >"] "12" [label="std::map< K, T >" tooltip="std::map< K, T >"] "8" [label="std::vector< T >" tooltip="std::vector< T >"] "27" [label="std::vector< T >" tooltip="std::vector< T >"] "20" [label="std::vector< K >" tooltip="std::vector< K >"] "7" [label="std::vector< RealPair >" tooltip="std::vector< RealPair >"] "23" [label="std::vector< const xlifepp::Transformation * >" tooltip="std::vector< const xlifepp::Transformation * >"] "28" [label="std::vector< number_t >" tooltip="std::vector< number_t >"] "18" [label="std::vector< real_t >" tooltip="std::vector< real_t >"] "37" [label="std::vector< std::vector< GeoNumPair > >" tooltip="std::vector< std::vector< GeoNumPair > >"] "14" [label="std::vector< std::vector< int_t > >" tooltip="std::vector< std::vector< int_t > >"] "25" [label="std::vector< string_t >" tooltip="std::vector< string_t >"] "36" [label="std::vector< xlifepp::GeomDomain * >" tooltip="std::vector< xlifepp::GeomDomain * >"] "35" [label="std::vector< xlifepp::GeomElement * >" tooltip="std::vector< xlifepp::GeomElement * >"] "39" [label="std::vector< xlifepp::Parameter * >" tooltip="std::vector< xlifepp::Parameter * >"] "10" [label="std::vector< xlifepp::Point >" tooltip="std::vector< xlifepp::Point >"] "29" [label="std::vector< xlifepp::Transformation * >" tooltip="std::vector< xlifepp::Transformation * >"] "33" [label="std::vector< xlifepp::Vector< real_t > >" tooltip="std::vector< xlifepp::Vector< real_t > >"] "6" [label="xlifepp::BoundingBox" tooltip="xlifepp::BoundingBox"] "26" [label="xlifepp::Collection< T >" tooltip="xlifepp::Collection< T >"] "15" [label="xlifepp::ExtrusionData" tooltip="xlifepp::ExtrusionData"] "43" [label="xlifepp::GeoNode" tooltip="xlifepp::GeoNode"] "5" [label="xlifepp::Geometry" tooltip="xlifepp::Geometry"] "19" [label="xlifepp::Matrix< K >" tooltip="xlifepp::Matrix< K >"] "34" [label="xlifepp::Mesh" tooltip="xlifepp::Mesh"] "9" [label="xlifepp::MinimalBox" tooltip="xlifepp::MinimalBox"] "1" [label="xlifepp::Parallelogram" tooltip="xlifepp::Parallelogram" fillcolor="#BFBFBF"] "38" [label="xlifepp::Parameters" tooltip="xlifepp::Parameters"] "31" [label="xlifepp::Parametrization" tooltip="xlifepp::Parametrization"] "30" [label="xlifepp::Point" tooltip="xlifepp::Point"] "3" [label="xlifepp::Polygon" tooltip="xlifepp::Polygon"] "2" [label="xlifepp::Quadrangle" tooltip="xlifepp::Quadrangle"] "4" [label="xlifepp::Surface" tooltip="xlifepp::Surface"] "16" [label="xlifepp::Transformation" tooltip="xlifepp::Transformation"] "22" [label="xlifepp::Vector< K >" tooltip="xlifepp::Vector< K >"] "24" -> "25" [dir=forward tooltip="public-inheritance"] "24" -> "26" [dir=forward tooltip="template-instance"] "17" -> "18" [dir=forward tooltip="public-inheritance"] "17" -> "19" [dir=forward tooltip="template-instance"] "21" -> "18" [dir=forward tooltip="public-inheritance"] "21" -> "22" [dir=forward tooltip="template-instance"] "32" -> "33" [dir=forward tooltip="public-inheritance"] "32" -> "22" [dir=forward tooltip="template-instance"] "41" -> "42" [dir=forward tooltip="template-instance"] "13" -> "12" [dir=forward tooltip="template-instance"] "11" -> "12" [dir=forward tooltip="template-instance"] "40" -> "12" [dir=forward tooltip="template-instance"] "20" -> "8" [dir=forward tooltip="template-instance"] "7" -> "8" [dir=forward tooltip="template-instance"] "23" -> "8" [dir=forward tooltip="template-instance"] "28" -> "8" [dir=forward tooltip="template-instance"] "18" -> "8" [dir=forward tooltip="template-instance"] "37" -> "8" [dir=forward tooltip="template-instance"] "14" -> "8" [dir=forward tooltip="template-instance"] "25" -> "8" [dir=forward tooltip="template-instance"] "36" -> "8" [dir=forward tooltip="template-instance"] "35" -> "8" [dir=forward tooltip="template-instance"] "39" -> "8" [dir=forward tooltip="template-instance"] "10" -> "8" [dir=forward tooltip="template-instance"] "29" -> "8" [dir=forward tooltip="template-instance"] "33" -> "8" [dir=forward tooltip="template-instance"] "6" -> "7" [dir=forward tooltip="usage"] "26" -> "27" [dir=forward tooltip="public-inheritance"] "15" -> "16" [dir=forward tooltip="usage"] "15" -> "24" [dir=forward tooltip="usage"] "15" -> "28" [dir=forward tooltip="usage"] "15" -> "18" [dir=forward tooltip="usage"] "15" -> "21" [dir=forward tooltip="usage"] "15" -> "29" [dir=forward tooltip="usage"] "15" -> "30" [dir=forward tooltip="usage"] "43" -> "43" [dir=forward tooltip="usage"] "43" -> "5" [dir=forward tooltip="usage"] "5" -> "6" [dir=forward tooltip="usage"] "5" -> "9" [dir=forward tooltip="usage"] "5" -> "11" [dir=forward tooltip="usage"] "5" -> "13" [dir=forward tooltip="usage"] "5" -> "14" [dir=forward tooltip="usage"] "5" -> "15" [dir=forward tooltip="usage"] "5" -> "31" [dir=forward tooltip="usage"] "5" -> "5" [dir=forward tooltip="usage"] "5" -> "43" [dir=forward tooltip="usage"] "19" -> "20" [dir=forward tooltip="public-inheritance"] "34" -> "5" [dir=forward tooltip="usage"] "34" -> "10" [dir=forward tooltip="usage"] "34" -> "35" [dir=forward tooltip="usage"] "34" -> "36" [dir=forward tooltip="usage"] "34" -> "28" [dir=forward tooltip="usage"] "34" -> "37" [dir=forward tooltip="usage"] "34" -> "34" [dir=forward tooltip="usage"] "9" -> "10" [dir=forward tooltip="usage"] "1" -> "2" [dir=forward tooltip="public-inheritance"] "38" -> "39" [dir=forward tooltip="usage"] "38" -> "40" [dir=forward tooltip="usage"] "31" -> "5" [dir=forward tooltip="usage"] "31" -> "21" [dir=forward tooltip="usage"] "31" -> "32" [dir=forward tooltip="usage"] "31" -> "34" [dir=forward tooltip="usage"] "31" -> "38" [dir=forward tooltip="usage"] "31" -> "41" [dir=forward tooltip="usage"] "30" -> "18" [dir=forward tooltip="public-inheritance"] "3" -> "4" [dir=forward tooltip="public-inheritance"] "2" -> "3" [dir=forward tooltip="public-inheritance"] "4" -> "5" [dir=forward tooltip="public-inheritance"] "4" -> "10" [dir=forward tooltip="usage"] "4" -> "18" [dir=forward tooltip="usage"] "4" -> "28" [dir=forward tooltip="usage"] "16" -> "17" [dir=forward tooltip="usage"] "16" -> "21" [dir=forward tooltip="usage"] "16" -> "23" [dir=forward tooltip="usage"] "22" -> "20" [dir=forward tooltip="public-inheritance"] }

definition of a parallelogram geometry in R^3

Parallelogram constructors are based on a key-value system. Here are the available keys:

  • _v1, _v2, _v3, _v4: to define the vertices of the Parallelogram, counterclockwise oriented (_v3 is optional)

  • _nnodes: to define the number of nodes on each edge of the Parallelogram

  • _hsteps: to define the local mesh steps on the vertices of the Parallelogram

  • _domain_name: to define the domain name

  • _side_names: to define the side names

  • _varnames: to define the variable names for print purpose

Subclassed by xlifepp::Rectangle

Public Functions

Parallelogram()#

default constructor

default parallelogram is [0,1]^2 No parametrization

Parallelogram(const Point &p1, const Point &p2, const Point &p4, const std::vector<number_t> &n = std::vector<number_t>(4, 2), const string_t &domName = string_t())#

default constructor with 3 points

Parallelogram(const Point &p1, const Point &p2, const Point &p4, const std::vector<real_t> &h, const string_t &domName = string_t())#

default constructor with 3 points

Parallelogram(Parameter p1, Parameter p2, Parameter p3)#

constructor with 3 Parameter

Parallelogram(Parameter p1, Parameter p2, Parameter p3, Parameter p4)#

constructor with 4 Parameter

Parallelogram(Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5)#

constructor with 5 Parameter

Parallelogram(Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5, Parameter p6)#

constructor with 6 Parameter

inline virtual ~Parallelogram()#

destructor

virtual string_t asString() const#

format as string

inline virtual Geometry *clone() const#

virtual copy constructor for Geometry

inline virtual Polygon *clonePG() const#

virtual copy constructor for Polygon

inline virtual Surface *cloneS() const#

virtual copy constructor for Surface

Vector<real_t> funParametrization(const Point &pt, Parameters &pars, DiffOpType d = _id) const#

parametrization (1-u-v)*p1+u*p2+v*p4

parametrization (P1) : p = p1+u*(p2-p1)+v*(p4-p1)

inline virtual Parallelogram &homothetize(const Parameter &p1)#

apply a homothety on a Parallelogram (1 key)

inline virtual Parallelogram &homothetize(const Parameter &p1, const Parameter &p2)#

apply a homothety on a Parallelogram (2 keys)

inline virtual Parallelogram &homothetize(const Point &c = Point(0., 0., 0.), real_t factor = 1.)#

apply a homothety on a Parallelogram

inline virtual Parallelogram &homothetize(real_t factor)#

apply a homothety on a Parallelogram

Vector<real_t> invParametrization(const Point &pt, Parameters &pars, DiffOpType d = _id) const#

inverse of parametrization (u,v)=invf(p)

real_t length1() const#

length of first or third side

real_t length2() const#

length of second or fourth side

virtual real_t measure() const#

surface of the parallelogram

inline number_t n1() const#

returns the number of nodes on first or third edge

inline number_t n2() const#

returns the number of nodes on second or fourth edge

inline virtual Parallelogram *parallelogram()#

access to child Parallelogram object

inline virtual const Parallelogram *parallelogram() const#

access to child Parallelogram object (const)

inline virtual Parallelogram &pointReflect(const Parameter &p1)#

apply a point reflection on a Parallelogram (1 key)

inline virtual Parallelogram &pointReflect(const Point &c = Point(0., 0., 0.))#

apply a point reflection on a Parallelogram

inline virtual Parallelogram &reflect2d(const Parameter &p1)#

apply a reflection2d on a Parallelogram (1 key)

inline virtual Parallelogram &reflect2d(const Parameter &p1, const Parameter &p2)#

apply a reflection2d on a Parallelogram (2 keys)

inline virtual Parallelogram &reflect2d(const Point &c, real_t dx, real_t dy = 0.)#

apply a reflection2d on a Parallelogram

inline virtual Parallelogram &reflect2d(const Point &c = Point(0., 0.), std::vector<real_t> d = std::vector<real_t>(2, 0.))#

apply a reflection2d on a Parallelogram

inline virtual Parallelogram &reflect3d(const Parameter &p1)#

apply a reflection3d on a Parallelogram (1 key)

inline virtual Parallelogram &reflect3d(const Parameter &p1, const Parameter &p2)#

apply a reflection3d on a Parallelogram (2 keys)

inline virtual Parallelogram &reflect3d(const Point &c, real_t nx, real_t ny, real_t nz = 0.)#

apply a reflection3d on a Parallelogram

inline virtual Parallelogram &reflect3d(const Point &c = Point(0., 0., 0.), std::vector<real_t> n = std::vector<real_t>(3, 0.))#

apply a reflection3d on a Parallelogram

inline virtual Parallelogram &rotate2d(const Parameter &p1)#

apply a rotation 2D on a Parallelogram (1 key)

inline virtual Parallelogram &rotate2d(const Parameter &p1, const Parameter &p2)#

apply a rotation 2D on a Parallelogram (2 keys)

inline virtual Parallelogram &rotate2d(const Point &c, real_t angle = 0.)#

apply a rotation 2D on a Parallelogram

inline virtual Parallelogram &rotate3d(const Parameter &p1)#

apply a rotation 3D on a Parallelogram (1 key)

inline virtual Parallelogram &rotate3d(const Parameter &p1, const Parameter &p2)#

apply a rotation 3D on a Parallelogram (2 keys)

inline virtual Parallelogram &rotate3d(const Parameter &p1, const Parameter &p2, const Parameter &p3)#

apply a rotation 3D on a Parallelogram (3 keys)

inline virtual Parallelogram &rotate3d(const Point &c, real_t dx, real_t dy, real_t angle)#

apply a rotation on a Parallelogram

inline virtual Parallelogram &rotate3d(const Point &c, real_t dx, real_t dy, real_t dz, real_t angle)#

apply a rotation on a Parallelogram

inline virtual Parallelogram &rotate3d(const Point &c, std::vector<real_t> d = std::vector<real_t>(3, 0.), real_t angle = 0.)#

apply a rotation 3D on a Parallelogram

inline virtual Parallelogram &rotate3d(real_t dx, real_t dy, real_t angle)#

apply a rotation 3D on a Parallelogram

inline virtual Parallelogram &rotate3d(real_t dx, real_t dy, real_t dz, real_t angle)#

apply a rotation 3D on a Parallelogram

virtual std::vector<std::pair<ShapeType, std::vector<const Point*>>> surfs() const#

returns list of surfaces (const)

virtual Parallelogram &transform(const Transformation &t)#

apply a geometrical transformation on a Parallelogram

inline virtual Parallelogram &translate(const Parameter &p1)#

apply a translation on a Parallelogram (1 key)

inline virtual Parallelogram &translate(real_t ux, real_t uy = 0., real_t uz = 0.)#

apply a translation on a Parallelogram (3 reals version)

inline virtual Parallelogram &translate(std::vector<real_t> u)#

apply a translation on a Parallelogram (vector version)