Class xlifepp::PolynomialsBasisT#
-
template<typename K = real_t>
class PolynomialsBasisT : public std::list<std::vector<PolynomialT<real_t>>>#
-
Inheritence diagram for xlifepp::PolynomialsBasisT:
Collaboration diagram for xlifepp::PolynomialsBasisT:
deals with a set of vectors of Polynomials
Public Functions
-
PolynomialsBasisT(const PolynomialBasisT<K>&, const PolynomialBasisT<K>&, const PolynomialBasisT<K>&, const string_t &na = "")#
-
construct P1xP2xP3
-
PolynomialsBasisT(const PolynomialBasisT<K>&, const PolynomialBasisT<K>&, const string_t &na = "")#
-
construct P1xP2
-
PolynomialsBasisT(const PolynomialBasisT<K>&, dimen_t, const string_t &na = "")#
-
construct PxPxP
-
PolynomialsBasisT(PolynomialSpace, dimen_t, dimen_t)#
-
construct special spaces
-
void add(const PolynomialsBasisT&)#
-
add basis to current basis
-
inline void add(const PolynomialT<K> &p1)#
-
add 1d vector of Polynomials to current basis
-
inline void add(const PolynomialT<K> &p1, const PolynomialT<K> &p2)#
-
add 2d vector of Polynomials to current basis
-
inline void add(const PolynomialT<K> &p1, const PolynomialT<K> &p2, const PolynomialT<K> &p3)#
-
add 3d vector of Polynomials to current basis
-
inline void add(const std::vector<PolynomialT<K>> &ps)#
-
add vector of Polynomials to current basis
-
void buildDQ2k(dimen_t)#
-
construct 2D: DQ2k= Pk^n + span( curl x^(k+1)y, curl y^(k+1)x ) 3D: DQ2k= Pk^n + span( curl (yz(wy-wz), xz(wz-wx), xy(wx-wy)) )
-
void buildTree()#
-
construct tree representation of polynomials
-
inline void clean()#
-
remove monomials with coefficients < epsilon defined in Polynomials
-
inline void clean(real_t asZero)#
-
remove monomials with coefficients < asZero
-
inline std::vector<std::vector<K>> eval(const K &x1, const K &x2 = K(1), const K &x3 = K(1)) const#
-
evaluate at x=(x1,x2,x3) using monomials representation
-
inline std::vector<std::vector<K>> &eval(std::vector<std::vector<K>> &res, const K &x1, const K &x2 = K(1), const K &x3 = K(1)) const#
-
evaluate at x=(x1,x2,x3) using monomials representation
-
inline std::vector<std::vector<K>> evalTree(const K &x1, const K &x2 = K(1), const K &x3 = K(1)) const#
-
evaluate at x=(x1,x2,x3) using tree representation
-
inline std::vector<std::vector<K>> &evalTree(std::vector<std::vector<K>> &res, const K &x1, const K &x2 = K(1), const K &x3 = K(1)) const#
-
evaluate at x=(x1,x2,x3) using tree epresentation
-
inline std::vector<std::vector<K>> operator()(const K &x1, const K &x2 = K(1), const K &x3 = K(1)) const#
-
evaluate at x=(x1,x2,x3)
-
inline std::vector<std::vector<K>> &operator()(std::vector<std::vector<K>> &res, const K &x1, const K &x2 = K(1), const K &x3 = K(1)) const#
-
evaluate at x=(x1,x2,x3)
-
inline PolynomialBasisT<K> operator[](number_t i) const#
-
< return all the i-th components as a PolynomialBasis (i starts from 0)
-
inline void push_back(const std::vector<PolynomialT<K>> &ps)#
-
add vector Polynomial to current basis
-
PolynomialsBasisT(const PolynomialBasisT<K>&, const PolynomialBasisT<K>&, const PolynomialBasisT<K>&, const string_t &na = "")#