Class xlifepp::DualDenseStorage#
-
class DualDenseStorage : public xlifepp::DenseStorage#
-
Inheritence diagram for xlifepp::DualDenseStorage:
Collaboration diagram for xlifepp::DualDenseStorage:
handles dense storage of matrix stored row by row for the lower “triangular” part and column by column for the upper “triangular”
Public Functions
-
DualDenseStorage(number_t, number_t, string_t id = "DualDenseStorage")#
-
constructor by access type, number of columns and rows
-
DualDenseStorage(number_t, string_t id = "DualDenseStorage")#
-
constructor by access type, number of columns and rows (square matrix)
-
DualDenseStorage(string_t id = "DualDenseStorage")#
-
default constructor
-
inline virtual ~DualDenseStorage()#
-
virtual destructor
-
template<typename M1, typename M2, typename R>
void addMatrixMatrix(const std::vector<M1>&, const std::vector<M2>&, std::vector<R>&) const#
-
templated row dense Matrix + Matrix
Add two matrices.
- Parameters:
-
m1 – vector values_ of first matrix
m2 – vector values_ of second matrix
r – vector values_ of result matrix
-
inline virtual void addMatrixMatrix(const std::vector<real_t> &m, const std::vector<real_t> &v, std::vector<real_t> &rv) const#
-
Matrix+Matrix.
-
inline virtual DualDenseStorage *clone() const#
-
create a clone (virtual copy constructor, covariant)
-
inline virtual void diagonalMatrixVector(const std::vector<real_t> &m, const std::vector<real_t> &v, std::vector<real_t> &rv, SymType s) const#
-
virtual std::vector<std::pair<number_t, number_t>> getCol(SymType s, number_t c, number_t r1 = 1, number_t r2 = 0) const#
-
get (row indices, adress) of col c in set [r1,r2]
-
virtual std::vector<std::pair<number_t, number_t>> getRow(SymType s, number_t r, number_t c1 = 1, number_t c2 = 0) const#
-
get (col indices, adress) of row r in set [c1,c2]
-
inline virtual void lowerD1MatrixVector(const std::vector<real_t> &m, const std::vector<real_t> &v, std::vector<real_t> &rv, SymType s) const#
-
inline virtual void lowerMatrixVector(const std::vector<real_t> &m, const std::vector<real_t> &v, std::vector<real_t> &rv, SymType s) const#
-
virtual number_t lowerPartSize() const#
-
returns number of matrix entries in lower triangular part of matrix
-
template<typename M, typename V, typename R>
void multMatrixVector(const std::vector<M>&, const std::vector<V>&, std::vector<R>&) const#
-
template<typename M, typename V, typename R>
void multMatrixVector(const std::vector<M> &m, V *vp, R *rp) const#
-
inline virtual void multMatrixVector(const std::vector<Matrix<real_t>> &m, const std::vector<Vector<real_t>> &v, std::vector<Vector<real_t>> &rv, SymType sym) const#
-
inline virtual void multMatrixVector(const std::vector<real_t> &m, const std::vector<real_t> &v, std::vector<real_t> &rv, SymType) const#
-
inline virtual void multMatrixVector(const std::vector<real_t> &m, real_t *vp, real_t *rp, SymType sym) const#
-
template<typename M, typename V, typename R>
void multVectorMatrix(const std::vector<M>&, const std::vector<V>&, std::vector<R>&) const#
-
template<typename M, typename V, typename R>
void multVectorMatrix(const std::vector<M> &m, V *vp, R *rp) const#
-
inline virtual void multVectorMatrix(const std::vector<Matrix<real_t>> &m, const std::vector<Vector<real_t>> &v, std::vector<Vector<real_t>> &rv, SymType sym) const#
-
inline virtual void multVectorMatrix(const std::vector<real_t> &m, const std::vector<real_t> &v, std::vector<real_t> &rv, SymType) const#
-
inline virtual void multVectorMatrix(const std::vector<real_t> &m, real_t *vp, real_t *rp, SymType sym) const#
-
virtual number_t pos(number_t i, number_t j, SymType s = _noSymmetry) const#
-
overloaded pos returns adress of entry (i,j)
-
virtual void positions(const std::vector<number_t>&, const std::vector<number_t>&, std::vector<number_t>&, bool errorOn = true, SymType = _noSymmetry) const#
-
access to submatrix positions
-
virtual void printEntries(std::ostream&, const std::vector<complex_t>&, number_t vb = 0, const SymType sym = _noSymmetry) const#
-
output dual dense matrix of complex scalars
-
virtual void printEntries(std::ostream&, const std::vector<Matrix<complex_t>>&, number_t vb = 0, const SymType sym = _noSymmetry) const#
-
output dual dense matrix of complex matrices
-
virtual void printEntries(std::ostream&, const std::vector<Matrix<real_t>>&, number_t vb = 0, const SymType sym = _noSymmetry) const#
-
output dual dense matrix of real matrices
-
virtual void printEntries(std::ostream&, const std::vector<real_t>&, number_t vb = 0, const SymType sym = _noSymmetry) const#
-
output dual dense matrix of real scalars
-
void printEntries(std::ostream&, const std::vector<Vector<complex_t>>&, number_t vb = 0, const SymType sym = _noSymmetry) const#
-
output dual dense matrix of complex vectors
-
void printEntries(std::ostream&, const std::vector<Vector<real_t>>&, number_t vb = 0, const SymType sym = _noSymmetry) const#
-
output dual dense matrix of real vectors
-
inline virtual void setDiagValue(std::vector<real_t> &m, const real_t k)#
-
set value of diagonal
-
template<typename T>
void setDiagValueDualDense(std::vector<T> &m, const T k)#
-
Set value of Diagonal.
-
template<typename M, typename V, typename R>
inline void sorDiagonalMatrixVector(const std::vector<M> &m, const std::vector<V> &v, std::vector<R> &r, const real_t w) const#
-
special template partial Matrix x Vector multiplications [w*D] v used in SSOR algorithm for D + L + U matrix splitting (D diagonal, L & U strict lower & upper trangular parts)
-
inline virtual void sorDiagonalMatrixVector(const std::vector<real_t> &m, const std::vector<real_t> &v, std::vector<real_t> &rv, const real_t w) const#
-
specializations of partial matrix std::vector multiplications
-
template<typename M, typename V, typename R>
inline void sorDiagonalSolver(const std::vector<M> &m, const std::vector<R> &b, std::vector<V> &x, const real_t w) const#
-
special template diagonal and triangular solvers D/w x = b used in SSOR algorithm for D + L + U matrix splitting (D diagonal, L & U strict lower & upper triangular parts)
-
inline virtual void sorDiagonalSolver(const std::vector<real_t> &m, const std::vector<real_t> &b, std::vector<real_t> &x, const real_t w) const#
-
specializations of diagonal solvers
-
template<typename M, typename V, typename R>
inline void sorLowerMatrixVector(const std::vector<M> &m, const std::vector<V> &v, std::vector<R> &r, const real_t w, const SymType sym) const#
-
special template partial Matrix x Vector multiplications [w*D+L] v used in SSOR algorithm for D + L + U matrix splitting (D diagonal, L & U strict lower & upper trangular parts)
-
inline virtual void sorLowerMatrixVector(const std::vector<real_t> &m, const std::vector<real_t> &v, std::vector<real_t> &rv, const real_t w, const SymType sym) const#
-
specializations of partial matrix vector multiplications
-
template<typename M, typename V, typename R>
inline void sorLowerSolver(const std::vector<M> &m, const std::vector<R> &b, std::vector<V> &x, const real_t w) const#
-
special template diagonal and triangular solvers (D/w+L) x = b used in SSOR algorithm for D + L + U matrix splitting (D diagonal, L & U strict lower & upper triangular parts)
-
inline virtual void sorLowerSolver(const std::vector<real_t> &m, const std::vector<real_t> &b, std::vector<real_t> &x, const real_t w) const#
-
specializations of lower triangular part solvers
-
template<typename M, typename V, typename R>
inline void sorUpperMatrixVector(const std::vector<M> &m, const std::vector<V> &v, std::vector<R> &r, const real_t w, const SymType sym) const#
-
special template partial Matrix x Vector multiplications [w*D+U] v used in SSOR algorithm for D + L + U matrix splitting (D diagonal, L & U strict lower & upper trangular parts)
-
inline virtual void sorUpperMatrixVector(const std::vector<real_t> &m, const std::vector<real_t> &v, std::vector<real_t> &rv, const real_t w, const SymType sym) const#
-
specializations of partial matrix vector multiplications
-
template<typename M, typename V, typename R>
inline void sorUpperSolver(const std::vector<M> &m, const std::vector<R> &b, std::vector<V> &x, const real_t w, const SymType sym) const#
-
special template diagonal and triangular solvers (D/w+U) x = b used in SSOR algorithm for D + L + U matrix splitting (D diagonal, L & U strict lower & upper triangular parts)
-
inline virtual void sorUpperSolver(const std::vector<real_t> &m, const std::vector<real_t> &b, std::vector<real_t> &x, const real_t w, const SymType sym) const#
-
specializations of upper triangular part solvers
-
virtual DualDenseStorage *toScalar(dimen_t, dimen_t)#
-
create a new scalar DualDense storage from current DualDense storage and submatrix sizes
-
template<typename M, typename OrdinalType>
void toUmfPack(const std::vector<M> &values, std::vector<OrdinalType> &colPointer, std::vector<OrdinalType> &rowIndex, std::vector<M> &mat) const#
-
conversion to umfpack format
-
template<typename M1, typename Idx>
void toUmfPack(const std::vector<M1> &m1, std::vector<Idx> &colPtUmf, std::vector<Idx> &rowIdxUmf, std::vector<M1> &resultUmf) const#
-
Extract and convert matrix storage to UMFPack format (Matlab sparse matrix)
- Parameters:
-
m1 – vector values_ current matrix
colPtUmf – vector column Pointer of UMFPack format
rowIdxUmf – vector row Index of UMFPack format
resultUmf – vector values of UMFPack format
-
inline virtual void toUmfPack(const std::vector<real_t> &values, std::vector<int_t> &colPointer, std::vector<int_t> &rowIndex, std::vector<real_t> &mat, const SymType sym) const#
-
specialization of umfpack conversion
-
inline virtual void upperD1MatrixVector(const std::vector<real_t> &m, const std::vector<real_t> &v, std::vector<real_t> &rv, SymType s) const#
-
DualDenseStorage(number_t, number_t, string_t id = "DualDenseStorage")#