Class xlifepp::Polyhedron#
-
class Polyhedron : public xlifepp::Volume#
-
Inheritence diagram for xlifepp::Polyhedron:
Collaboration diagram for xlifepp::Polyhedron:
definition of a polyhedral geometry in R^3 Generally, a polyhedron is a list of polygonal faces.
But data is storages differently to avoid pointer manipulation So, we decide to store:
the list of vertices -> Vector<Point> p_
the definition of faces as a list of points -> Vector<Vector<number_t> > faces_ it is so that p_[faces_[i][j]] is the j-st vertex of the i-st face of the polyhedron
the number of nodes on each edge -> Vector<Vector<number_t> > n_ it is so that n_[i][j] is the number of nodes on j-st edge [ p_[faces_[i][j]] p_[faces_[i][j+1]] ] of the i-st face of the polyhedron
Polyhedron constructors are based on a key-value system. Here are the available keys:
_faces: the geometrical faces defining the Polyhedron
_nnodes: to define the number of nodes on each edge of the Polyhedron
_hsteps: to define the local mesh steps on the vertices of the Polyhedron
_domain_name: to define the domain name
_side_names: to define the side names
_varnames: to define the variable names for print purpose
Subclassed by xlifepp::Hexahedron, xlifepp::Tetrahedron
Public Functions
-
Polyhedron()#
-
default constructor
default polyhedron is tetrahedron (0,0,0) (1,0,0) (0,1,0) (0,0,1)
-
Polyhedron(const Polyhedron &ph)#
-
copy constructor
-
inline virtual ~Polyhedron()#
-
destructor
-
virtual string_t asString() const#
-
format as string
-
virtual Geometry &buildBoundary() const#
-
create boundary geometry
create boundary geometry of polyhedron as a composite (union of faces)
-
virtual void collect(const string_t &n, std::list<Geometry*>&) const#
-
collect in a list all canonical geometry’s with name n
-
inline virtual void computeMB()#
-
computes the minimal box
-
virtual std::vector<std::pair<ShapeType, std::vector<const Point*>>> curves() const#
-
returns list of edges
-
inline virtual Polyhedron &homothetize(const Parameter &p1)#
-
apply a homothety on a Polyhedron (1 key)
-
inline virtual Polyhedron &homothetize(const Parameter &p1, const Parameter &p2)#
-
apply a homothety on a Polyhedron (2 keys)
-
inline virtual Polyhedron &homothetize(const Point &c = Point(0., 0., 0.), real_t factor = 1.)#
-
apply a homothety on a Polyhedron
-
inline virtual Polyhedron &homothetize(real_t factor)#
-
apply a homothety on a Polyhedron
-
inline virtual Polyhedron &pointReflect(const Parameter &p1)#
-
apply a point reflection on a Polyhedron (1 key)
-
inline virtual Polyhedron &pointReflect(const Point &c = Point(0., 0., 0.))#
-
apply a point reflection on a Polyhedron
-
inline virtual Polyhedron *polyhedron()#
-
access to child Polyhedron object
-
inline virtual const Polyhedron *polyhedron() const#
-
access to child Polyhedron object (const)
-
inline virtual Polyhedron &reflect2d(const Parameter &p1)#
-
apply a reflection2d on a Polyhedron (1 key)
-
inline virtual Polyhedron &reflect2d(const Parameter &p1, const Parameter &p2)#
-
apply a reflection2d on a Polyhedron (2 keys)
-
inline virtual Polyhedron &reflect2d(const Point &c, real_t dx, real_t dy = 0.)#
-
apply a reflection2d on a Polyhedron
-
inline virtual Polyhedron &reflect2d(const Point &c = Point(0., 0.), std::vector<real_t> d = std::vector<real_t>(2, 0.))#
-
apply a reflection2d on a Polyhedron
-
inline virtual Polyhedron &reflect3d(const Parameter &p1)#
-
apply a reflection3d on a Polyhedron (1 key)
-
inline virtual Polyhedron &reflect3d(const Parameter &p1, const Parameter &p2)#
-
apply a reflection3d on a Polyhedron (2 keys)
-
inline virtual Polyhedron &reflect3d(const Point &c, real_t nx, real_t ny, real_t nz = 0.)#
-
apply a reflection3d on a Polyhedron
-
inline virtual Polyhedron &reflect3d(const Point &c = Point(0., 0., 0.), std::vector<real_t> n = std::vector<real_t>(3, 0.))#
-
apply a reflection3d on a Polyhedron
-
inline virtual Polyhedron &rotate2d(const Parameter &p1)#
-
apply a rotation 2D on a Polyhedron (1 key)
-
inline virtual Polyhedron &rotate2d(const Parameter &p1, const Parameter &p2)#
-
apply a rotation 2D on a Polyhedron (2 keys)
-
inline virtual Polyhedron &rotate2d(const Point &c, real_t angle = 0.)#
-
apply a rotation 2D on a Polyhedron
-
inline virtual Polyhedron &rotate3d(const Parameter &p1)#
-
apply a rotation 3D on a Polyhedron (1 key)
-
inline virtual Polyhedron &rotate3d(const Parameter &p1, const Parameter &p2)#
-
apply a rotation 3D on a Polyhedron (2 keys)
-
inline virtual Polyhedron &rotate3d(const Parameter &p1, const Parameter &p2, const Parameter &p3)#
-
apply a rotation 3D on a Polyhedron (3 keys)
-
inline virtual Polyhedron &rotate3d(const Point &c, real_t dx, real_t dy, real_t angle)#
-
apply a rotation on a Polyhedron
-
inline virtual Polyhedron &rotate3d(const Point &c, real_t dx, real_t dy, real_t dz, real_t angle)#
-
apply a rotation on a Polyhedron
-
inline virtual Polyhedron &rotate3d(const Point &c, std::vector<real_t> d = std::vector<real_t>(3, 0.), real_t angle = 0.)#
-
apply a rotation 3D on a Polyhedron
-
inline virtual Polyhedron &rotate3d(real_t dx, real_t dy, real_t angle)#
-
apply a rotation 3D on a Polyhedron
-
inline virtual Polyhedron &rotate3d(real_t dx, real_t dy, real_t dz, real_t angle)#
-
apply a rotation 3D on a Polyhedron
-
inline virtual void setFaces()#
-
set the faces vector
-
virtual std::vector<std::pair<ShapeType, std::vector<const Point*>>> surfs() const#
-
returns list of faces
-
virtual Polyhedron &transform(const Transformation &t)#
-
apply a geometrical transformation on a Polyhedron
-
inline virtual Polyhedron &translate(const Parameter &p1)#
-
apply a translation on a Polyhedron (1 key)
-
inline virtual Polyhedron &translate(real_t ux, real_t uy = 0., real_t uz = 0.)#
-
apply a translation on a Polyhedron (3 reals version)
-
inline virtual Polyhedron &translate(std::vector<real_t> u)#
-
apply a translation on a Polyhedron (vector version)
-
void updateSideNames()#
-
update side names from face domain names (do not use for child of Polyhedron)
-
inline virtual bool withNnodes() const#
-
check if Polyhedron is defined only with _nnodes or with _hsteps option