Class xlifepp::Disk#
-
class Disk : public xlifepp::Ellipse#
-
Inheritence diagram for xlifepp::Disk:
Collaboration diagram for xlifepp::Disk:
definition of a circular geometry in R^3 (surface)
Disk constructors are based on a key-value system. Here are the available keys:
_center: to define the center of the Disk
_v1, _v2: to define “apogees” of the Disk
_radius: to define semi-axis lengths of the Disk
_angle1, _angle2: to define an circular sector from a pair of angles. The angular origin is determined by _v1
_type: indicator to fit curved boundaries (default) or not which gives flat (or plane) boundaries
_nnodes: to define the number of nodes on the edges of the Disk
_hsteps: to define the local mesh steps on build points of the Disk
_domain_name: to define the domain name
_side_names: to define the side names
_varnames: to define the variable names for print purpose
Public Functions
-
Disk()#
-
default constructor
-
Disk(const Point ¢er, const Point &p1, const Point &p2, const std::vector<number_t> &n = std::vector<number_t>(4, 2), const string_t &domName = string_t())#
-
default constructor with 3 points
-
Disk(const Point ¢er, const Point &p1, const Point &p2, const std::vector<real_t> &h, const string_t &domName = string_t())#
-
default constructor with 3 points
-
Disk(Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5)#
-
constructor with 5 Parameter
-
Disk(Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5, Parameter p6)#
-
constructor with 6 Parameter
-
Disk(Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5, Parameter p6, Parameter p7)#
-
constructor with 7 Parameter
-
Disk(Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5, Parameter p6, Parameter p7, Parameter p8)#
-
constructor with 8 Parameter
-
Disk(Parameter p1, Parameter p2, Parameter p3, Parameter p4, Parameter p5, Parameter p6, Parameter p7, Parameter p8, Parameter p9)#
-
constructor with 9 Parameter
-
inline virtual ~Disk()#
-
destructor
-
virtual string_t asString() const#
-
format as string
-
inline virtual Geometry *clone() const#
-
computes the bounding box
computes the minimal box virtual copy constructor for Geometry
-
inline virtual Disk &homothetize(const Parameter &p1, const Parameter &p2)#
-
apply a homothety on a Disk (2 keys)
-
inline virtual Disk &homothetize(const Point &c = Point(0., 0., 0.), real_t factor = 1.)#
-
apply a homothety on a Disk
-
inline virtual Disk &pointReflect(const Point &c = Point(0., 0., 0.))#
-
apply a point reflection on a Disk
-
inline real_t radius() const#
-
return radius
-
inline virtual Disk &reflect2d(const Parameter &p1, const Parameter &p2)#
-
apply a reflection2d on a Disk (2 keys)
-
inline virtual Disk &reflect2d(const Point &c, real_t dx, real_t dy = 0.)#
-
apply a reflection2d on a Disk
-
inline virtual Disk &reflect2d(const Point &c = Point(0., 0.), std::vector<real_t> d = std::vector<real_t>(2, 0.))#
-
apply a reflection2d on a Disk
-
inline virtual Disk &reflect3d(const Parameter &p1, const Parameter &p2)#
-
apply a reflection3d on a Disk (2 keys)
-
inline virtual Disk &reflect3d(const Point &c, real_t nx, real_t ny, real_t nz = 0.)#
-
apply a reflection3d on a Disk
-
inline virtual Disk &reflect3d(const Point &c = Point(0., 0., 0.), std::vector<real_t> n = std::vector<real_t>(3, 0.))#
-
apply a reflection3d on a Disk
-
inline virtual Disk &rotate2d(const Parameter &p1, const Parameter &p2)#
-
apply a rotation 2D on a Disk (2 keys)
-
inline virtual Disk &rotate3d(const Parameter &p1, const Parameter &p2)#
-
apply a rotation 3D on a Disk (2 keys)
-
inline virtual Disk &rotate3d(const Parameter &p1, const Parameter &p2, const Parameter &p3)#
-
apply a rotation 3D on a Disk (3 keys)
-
inline virtual Disk &rotate3d(const Point &c, real_t dx, real_t dy, real_t angle)#
-
apply a rotation on a Disk
-
inline virtual Disk &rotate3d(const Point &c, real_t dx, real_t dy, real_t dz, real_t angle)#
-
apply a rotation on a Disk
-
inline virtual Disk &rotate3d(const Point &c, std::vector<real_t> d = std::vector<real_t>(3, 0.), real_t angle = 0.)#
-
apply a rotation 3D on a Disk
-
inline virtual Disk &rotate3d(real_t dx, real_t dy, real_t dz, real_t angle)#
-
apply a rotation 3D on a Disk
-
virtual Disk &transform(const Transformation &t)#
-
apply a geometrical transformation on a Disk