Integration methods#

To perform computation of integrals over elements, the library provides IntegrationMethod class which is an abstract class. Two abstract classes inherit from it : the SingleIM class to deal with single integral and the DoubleIM class to deal with double integral. All the classes have to inherit from these two classes.

Among integration methods, quadrature methods are general and well adapted to regular functions to be integrated. XLiFE++ provides the QuadratureIM class, inherited from SingleIM class, which encapsulates the usual quadrature formulae defined in QuadratureIM class. Besides, the ProductIM class, inherited from doubleIM class, manages a pair of SingleIM objects and may be used to take into double quadrature method (adapted to compute double integral with regular kernel).

The inheritance diagram looks like

Table 3 :widths: 20 5 20 5 40 :header-rows: 0#
IntegrationMethod

(abstact)

\(\longrightarrow\)

SingleIM (abstract)

\(\longrightarrow\)

  • QuadratureIM (based on Quadrature class)

  • PolynomialIM (exact intg. of polynoms)

  • LenoirSalles2dIR (analytic method for IR, Laplace P0, P1)

  • LenoirSalles3dIR (analytic method for IR, Laplace triangle P0, P1)

  • FilonIM (1D oscillatory integrals intg_0_T f(t)exp(-iat))

\(\longrightarrow\)

DoubleIM (abstract)

\(\longrightarrow\)

  • ProductIM (product of single intg methods)

  • LenoirSalles2DIM (analytic method for BEM Laplace P0 and P1)

  • LenoirSalles3DIM (analytic method for BEM Laplace triangle P0, P1)

  • SauterSchwabIM (quadrature for BEM Laplace, Helmholtz triangle)

  • SauterSchwabSymIM (Sauter-Schwab method for symmetrical kernels)

  • DuffyIM (quadrature for BEM Laplace, Helmholtz segment)

  • CollinoIM (semi-analytic method for BEM Maxwell RT0)

As some computations, in particular BEM computations, require more than one integration method, XLiFE++ provides the IntegrationMethods class that collects IntegrationMethod objects with additional parameters (IntgMeth class).

The IntegrationMethod, SingleIM, DoubleIM classes#

The IntegrationMethod class#

The IntegrationMethod class, basis class of all integration methods, manages a name, a type of integral and two booleans:

class IntegrationMethod
{
  public :
   String name;
   IntegrationMethodType imType;
   bool requireRefElement;
   bool requirePhyElement;
};

Up to now, the types of integral defined in enumeration are:

enum IntegrationMethodType
  {
   _undefIM, _quadratureIM, _polynomialIM, _productIM, _LenoirSalles2dIM, Lenoir_Salles_2d =_LenoirSalles2dIM, _LenoirSalles3dIM, Lenoir_Salles_3d=_LenoirSalles3dIM,  _LenoirSalles2dIR, _LenoirSalles3dIR, _SauterSchwabIM, Sauter_Schwab=_SauterSchwabIM, _SauterSchwabSymIM, Sauter_Schwab_sym=_SauterSchwabSymIM, _DuffyIM, Duffy = _DuffyIM, _DuffySymIM, Duffy_sym = _DuffySymIM, _HMatrixIM, H_Matrix= _HMatrixIM, _CollinoIM, _FilonIM
  };

The _HMatrixIM type is a very particular case because it is used to choose the HMatrix representation and compression methods which can be seen in some way as an integration method!

This class provides few general functions, most of them being virtual ones

IntegrationMethod(IntegrationMethodType imt=_undefIM, bool ref=false, bool phy=false, const String& na="")
virtual ~IntegrationMethod(){};
virtual bool isSingleIM() const =0;
virtual bool isDoubleIM() const =0;
virtual void print(std::ostream& os) const;
IntegrationMethodType type() const;
virtual bool useQuadraturePoints() const;

std::ostream& operator<<(std::ostream&, const IntegrationMethod&);

The SingleIM, DoubleIM classes#

The SingleIM, DoubleIM derived classes provides only simple member functions:

class SingleIM : public IntegrationMethod
{
  public :
   bool isSingleIM() const {return true;}
   bool isDoubleIM() const {return false;}
   SingleIM(IntegrationMethodType imt=_undefIM);
   virtual void print(std::ostream& os) const;
}
class DoubleIM : public IntegrationMethod
{
 public :
  bool isSingleIM() const {return false;}
  bool isDoubleIM() const {return true;}
  DoubleIM(IntegrationMethodType imt=_undefIM);
  virtual void print(std::ostream& os) const;
}

The QuadratureIM class#

The QuadratureIM class handles a list of QuadratureIM pointers indexed by ShapeType to deal with multiple quadrature rule in case of domain having more than one shape type. As the quadrature rule are often involved in context of FE computation, the QuadratureIM class may store shape values (pointer):

class QuadratureIM : public SingleIM
{
 protected :
  std::map<ShapeType, Quadrature *> quadratures_;
  std::map<ShapeType, std::vector<ShapeValues>* > shapevalues_;
 ...
}

It provides two basic constructors, accessors and print facilities (all are public):

QuadratureIM( ShapeType, QuadRule =_defaultRule, Number =0);
QuadratureIM(const std::set<ShapeType>&, QuadRule =_defaultRule, Number =0);
virtual bool useQuadraturePoints() const;
Quadrature* getQuadrature(ShapeType) const;
void setShapeValues(ShapeType, std::vector<ShapeValues>*);
std::vector<ShapeValues>* getShapeValues(ShapeType);
virtual void print(std::ostream& os) const;
std::ostream& operator<<(std::ostream&, const QuadratureIM&);

The ProductIM class#

In order to represent a product of integration method over a product of geometric domain, the ProductIM class carries two SingleIM pointers:

class ProductIM : public DoubleIM
{
 protected :
  SingleIM* im_x;     //!< integration method along x
  SingleIM* im_y;     //!< integration method along y
}

and provides simple member functions:

ProductIM(SingleIM* imx=0, SingleIM* imy=0);
SingleIM* getxIM();
SingleIM* getyIM();
virtual bool useQuadraturePoints() const;
virtual void print(std::ostream& os) const;  //!< print on stream

The Quadrature, QuadratureRule classes

The quadrature formulae have the following form:

\[\int_{\widehat{E}} f(\widehat{x})d\widehat{x}\approx \sum_{i=1,q} \omega_i\,f(\widehat{x}_i)\]

where \((\widehat{x}_i)_{i=1,q}\) are quadrature points belonging to reference element \(\hat{E}\) and \((w_i)_{i=1,q}\) are quadrature weights.

Up to now, there exist quadrature formulae for unit segment \(]0,1[\), for unit triangle, for unit quadrangle (square), for unit tetrahedron, for unit hexahedron (cube) and for unit prism. The following tables give the list of quadrature formulae :

General rules

Gauss-Legendre

Gauss-Lobatto

Grundmann-Muller

symmetrical Gauss

segment

any odd degree

any odd degree

quadrangle

any odd degree

any odd degree

any odd degree up to 21

triangle

any odd degree

any odd degree

degree up to 10

hexahedron

any odd degree

any odd degree

odd degree up to 11

tetrahedron

any odd degree -

any odd degree

degree up to 10

prism

degree up to 10

pyramid

any odd degree

any odd degree

degree up to 10

Particular rules

nodal

miscellaneous

segment

P1 to P4

quadrangle

Q1 to Q4

triangle

P1 to P3

Hammer-Stroud 1 to 6

hexahedron

Q1 to Q4

tetrahedron

P1, P3

Stroud 1 to 5

prism

P1

centroid 1, tensor product 1,3,5

pyramid

P1

centroid 1, Stroud 7

More precisely, the rules that are implemented :

  • 1D rules

    • Gauss-Legendre rule, degree \(2n+1\), \(n\) points

    • Gauss-Lobatto rule, degree \(2n-1\), \(n\) points

    • Gauss-Lobatto rule, degree \(2n-1\), \(n\) points

    • trapezoidal rule, degree \(1\), \(2\) points

    • Simpson rule, degree \(3\), \(3\) points

    • Simpson \(3\) \(8\) rule, degree \(3\), \(4\) points

    • Booleb rule, degree \(5\), \(5\) points

    • Wedge rule, degree \(5\), \(6\) points

  • Rules over the unit simplex (less quadrature points BUT with negative weights)

    • TN Grundmann-Moller rule, degree \(2n+1\), \(C^n_{n+d+1}\) points

  • Rules over the unit triangle \(\{ x > 0, y >0, x+y < 1 \}\)

    • T2P2 MidEdge rule

    • T2P2 Hammer-Stroud rule

    • T2P3 Albrecht-Collatz rule, degree \(3\), \(6\) points, Stroud (p.314)

    • T2P3 Stroud rule, degree \(3\), \(7\) points, Stroud (p.308)

    • T2P5 Radon-Hammer-Marlowe-Stroud rule, degree \(6\), \(7\) points, Stroud (p.314)

    • T2P6 Hammer rule, degree \(6\), \(12\) points, G.Dhatt, G.Touzot (p.298)

    • symmetrical Gauss up to degree 10

  • Rules over the unit tetrahedron \(\{x > 0, y >0, z>0, x+y+z < 1\}\)

    • T3P2 Hammer-Stroud rule, degree 2, 4 points, Stroud (p.307)

    • T3P3 Stroud rule, degree \(3\), \(8\) points, Stroud (p.308)

    • T3P5 Stroud rule, degree \(5\), \(15\) points, Stroud (p.315)

    • symmetrical Gauss up to degree 10

  • Rules over the unit prism \(\{ 0 < x, y < 1, x+y<1, 0 < z < 1\}\)

    • P1 nodal rule

    • tensor product of 2-points Gauss-Legendre rule on [0,1] and Stroud 7 points formula on the unit triangle (degree 3)

    • tensor product of 3-points Gauss-Legendre rule on [0,1] and Radon-Hammmer-Marlowe-Stroud 7 points formula on the unit triangle (degree 5)

    • symmetrical Gauss up to degree 10

  • Rules over the unit pyramid \(\{ 0 < x, y < 1-z, 0 < z < 1\}\)

    • P1 nodal rule

    • symmetrical Gauss up to degree 10

  • Rules built from lower dimension rules

    • tensor product of quadrature rules (quadrangle and hexahedron)

    • conical product of quadrature rules (triangle and pyramid)

    • rule built from 1D nodal rule which are quadrangle nodal rule

    • rule built from 1D nodal rule which are hexahedron nodal rule

References :

  • A.H. Stroud, Approximate calculation of multiple integrals, Prentice Hall, 1971.

  • G.Dhatt & G Touzot, The finite element method displayed, John Wiley & Sons, Chichester, 1984

    1. Grundmann & H.M. Moller, Invariant Integration Formulas for the N-Simplex by Combinatorial Methods, SIAM Journal on Numerical Analysis, Vol 15, No 2, Apr. 1978, pages 282-290.

  • F.D. Witherden & P.E. Vincent, On the identification of symmetric quadrature rules for finite element methods, Computers & Mathematics with Applications, Volume 69, Issue 10, May 2015, Pages 1232-1241.

These quadrature formulae are provided by using two classes : the Quadrature class which handles the main quadrature objects and the QuadratureRule class carrying the quadrature points and weights.

The Quadrature class#

The Quadrature class manages all information related to quadrature :

class Quadrature
{
  public:
   GeomRefElement* geomRefElt_p;  // geometric element bearing quadrature rule
   QuadratureRule quadratureRule; // embedded QuadratureRule object
  protected:
   QuadRule rule_;           // type of quadrature rule
   Number degree_;           // degree of quadrature rule
   bool hasPointsOnBoundary_;// as it reads
   String name_;             // name of quadrature formula
  public:
   static std::vector<Quadrature*> theQuadratureRules;
  ...
}

QuadRule is an enumeration of all types of quadrature supported:

enum QuadRule
{
  _defaultRule = 0, _GaussLegendreRule, _symmetricalGaussRule, _GaussLobattoRule, Gauss_Lobatto = _GaussLobattoRule, _nodalRule, _miscRule,_GrundmannMollerRule, _doubleQuadrature
};

degree_ is either the degree of the quadrature rule or the degree of the polynomial interpolation in case of nodal quadrature rules. A Quadrature object has to be instanced only once and the static vector theQuadratureRules collects all the pointers to Quadrature object. Note that the shape bearing the quadrature is given through the GeomRefElement pointer.

The class proposes only a default constructor, a full basic constructor and a destructor :

Quadrature();
Quadrature(ShapeType , QuadRule, Number, const String&, bool pob = false);

Note that the basic constructor initializes member attributes but does not load the quadrature points and quadrature weights (QuadratureRule)! The practical “construction” is done by the external function findQuadrature(). The copy constructor and assignment operator are defined as private member function to avoid duplicated Quadrature object

The following accessors (read only) are provided:

String name() const;
QuadRule rule() const;
Number degree() const;
bool hasPointsOnBoundary() const;
Dimen dim() const;
Number numberOfPoints() const;
ShapeType shapeType() const;
std::vector<Real>::const_iterator point(Number i = 0) const;
std::vector<Real>::const_iterator weight(Number i = 0) const;

Warning

To construct a Quadrature object, the external function findQuadrature has to be used friend Quadrature* findQuadrature(ShapeType shape, QuadRule rule, Number degree, bool hpob= false);

It searches in the static vector theQuadratureRules the quadrature rule defined by a shape, a quadrature rule and a degree. If it is not found, a new Quadrature object is created on the heap. In any case a pointer to the Quadrature object is returned.

There are few functions depending on the shape that are called during the creation process :

Quadrature* segmentQuadrature(QuadRule, Number);
Quadrature* triangleQuadrature(QuadRule, Number);
Quadrature* quadrangleQuadrature(QuadRule, Number);
Quadrature* tetrahedronQuadrature(QuadRule, Number);
Quadrature* hexahedronQuadrature(QuadRule, Number);
Quadrature* prismQuadrature(QuadRule, Number);
Quadrature* pyramidQuadrature(QuadRule, Number);
static void clear();

These functions load quadrature points and quadrature weights in a QuadratureRule object using member functions of QuadratureRule class. The clear() static function deletes quadrature objects stored in the theQuadratureRules static vector.

To choose quadrature rules, the class provides the static function bestQuadRule() returning the ‘best’ quadrature rule for a given shape \(S\) and a given polynomial degree \(d\).

static QuadRule bestQuadRule(ShapeType, Number);

Best rule has to be understood as the rule on shape \(S\) with the minimum of quadrature points integrating exactly polynomials of degree \(d\).

The following table gives the current best rules :

shape

degree

quadrature rule

number of points

segment

\(1\)

Gauss-Legendre \(1\)

\(1\)

segment

\(2,3\)

Gauss-Legendre \(3\)

\(2\)

segment

\(4,5\)

Gauss-Legendre \(5\)

\(3\)

segment

\(2n-1\)

Gauss-Legendre \(2n-1\)

\(n\)

shape

degree

quadrature rule

number of points

quadrangle

\(1\)

Gauss-Legendre \(1\)

\(1\)

quadrangle

\(2,3\)

Gauss-Legendre \(3\)

\(4\)

quadrangle

\(4,5\)

symmetrical Gauss \(5\)

\(8\)

quadrangle

\(6,7\)

symmetrical Gauss \(7\)

\(12\)

quadrangle

\(7,9\)

symmetrical Gauss \(9\)

\(20\)

quadrangle

\(10,11\)

symmetrical Gauss \(11\)

\(28\)

quadrangle

\(12,13\)

symmetrical Gauss \(13\)

\(37\)

quadrangle

\(14,15\)

symmetrical Gauss \(15\)

\(48\)

quadrangle

\(16,17\)

symmetrical Gauss \(17\)

\(60\)

quadrangle

\(18,19\)

symmetrical Gauss \(19\)

\(72\)

quadrangle

\(20,21\)

symmetrical Gauss \(21\)

\(85\)

quadrangle

\(2n-1>21\)

Gauss-Legendre \(2n-1\)

\(n^2\)

shape

degree

quadrature rule

number of points

triangle

\(1\)

centroid rule (misc, \(1\))

\(1\)

triangle

\(2\)

P2 Hammer-Stroud (misc, \(2\))

\(2\)

triangle

\(3\)

Grundmann-Moller \(3\)

\(3\)

triangle

\(4\)

symmetrical Gauss \(4\)

\(6\)

triangle

\(5\)

symmetrical Gauss \(5\)

\(7\)

triangle

\(6\)

symmetrical Gauss \(6\)

\(12\)

triangle

\(7\)

symmetrical Gauss \(7\)

\(15\)

triangle

\(8\)

symmetrical Gauss \(8\)

\(16\)

triangle

\(9\)

symmetrical Gauss \(9\)

\(19\)

triangle

\(10\)

symmetrical Gauss \(10\)

\(25\)

triangle

\(11\)

symmetrical Gauss \(11\)

\(28\)

triangle

\(12\)

symmetrical Gauss \(12\)

\(33\)

triangle

\(13\)

symmetrical Gauss \(13\)

\(37\)

triangle

\(14\)

symmetrical Gauss \(14\)

\(42\)

triangle

\(15\)

symmetrical Gauss \(15\)

\(49\)

triangle

\(16\)

symmetrical Gauss \(16\)

\(55\)

triangle

\(17\)

symmetrical Gauss \(17\)

\(60\)

triangle

\(18\)

symmetrical Gauss \(18\)

\(67\)

triangle

\(19\)

symmetrical Gauss \(19\)

\(73\)

triangle

\(20\)

symmetrical Gauss \(20\)

\(79\)

triangle

\(2n-1>20\)

Gauss-Legendre \(2n-1\)

\(?\)

shape

degree

quadrature rule

number of points

hexahedron

\(1\)

Gauss-Legendre \(1\)

\(1\)

hexahedron

\(2,3\)

symmetrical Gauss \(3\)

\(6\)

hexahedron

\(4,5\)

symmetrical Gauss \(5\)

\(14\)

hexahedron

\(6,7\)

symmetrical Gauss \(7\)

\(34\)

hexahedron

\(8,9\)

symmetrical Gauss \(9\)

\(58\)

hexahedron

\(10,11\)

symmetrical Gauss \(11\)

\(90\)

hexahedron

\(2n-1\ge 12\)

Gauss-Legendre \(2n-1\)

\(n^3\)

shape

degree

quadrature rule

number of points

tetrahedron

\(1\)

centroid rule (misc, \(1\))

\(1\)

tetrahedron

\(2\)

P2 Hammer-Stroud (misc, \(2\))

\(4\)

tetrahedron

\(3\)

Grundmann-Moller \(3\)

\(5\)

tetrahedron

\(4,5\)

symmetrical Gauss \(5\)

\(14\)

tetrahedron

\(6\)

symmetrical Gauss \(6\)

\(24\)

tetrahedron

\(7\)

symmetrical Gauss \(7\)

\(35\)

tetrahedron

\(8\)

symmetrical Gauss \(8\)

\(46\)

tetrahedron

\(9\)

symmetrical Gauss \(9\)

\(59\)

tetrahedron

\(10\)

symmetrical Gauss \(10\)

\(81\)

tetrahedron

\(2n-1\ge 11\)

Grundmann-Moller \(2n-1\)

\(?\)

shape

degree

quadrature rule

number of points

prism

\(1\)

centroid rule (misc, \(1\))

\(1\)

prism

\(2\)

symmetrical Gauss \(2\)

\(5\)

prism

\(3\)

symmetrical Gauss \(3\)

\(8\)

prism

\(4\)

symmetrical Gauss \(4\)

\(11\)

prism

\(5\)

symmetrical Gauss \(5\)

\(16\)

prism

\(6\)

symmetrical Gauss \(6\)

\(28\)

prism

\(7\)

symmetrical Gauss \(7\)

\(35\)

prism

\(8\)

symmetrical Gauss \(8\)

\(46\)

prism

\(9\)

symmetrical Gauss \(9\)

\(60\)

prism

\(10\)

symmetrical Gauss \(10\)

\(85\)

shape

degree

quadrature rule

number of points

pyramid

\(1\)

centroid rule (misc, \(1\))

\(1\)

pyramid

\(2\)

symmetrical Gauss \(2\)

\(5\)

pyramid

\(3\)

symmetrical Gauss \(3\)

\(6\)

pyramid

\(4\)

symmetrical Gauss \(4\)

\(10\)

pyramid

\(5\)

symmetrical Gauss \(5\)

\(15\)

pyramid

\(6\)

symmetrical Gauss \(6\)

\(24\)

pyramid

\(7\)

symmetrical Gauss \(7\)

\(31\)

pyramid

\(8\)

symmetrical Gauss \(8\)

\(47\)

pyramid

\(9\)

symmetrical Gauss \(9\)

\(62\)

pyramid

\(10\)

symmetrical Gauss \(10\)

\(83\)

Finally, Quadrature class provides some print and error utilities:

void badNodeRule(int n_nodes);
void badDegreeRule();
void noEvenDegreeRule();
void upperDegreeRule();
friend std::ostream& operator<<(std::ostream&, const Quadrature&);
friend void alternateRule(QuadRule, ShapeType, const String&);

The QuadratureRule class#

The QuadratureRule class stores quadrature points and quadrature weights and provides member functions to load them :

class QuadratureRule
{
 private:
  std::vector<Real> coords_;    // point coordinates of quadrature rule
  std::vector<Real> weights_;   // weights of quadrature rule
  Dimen dim_;                   // dimension of points
  ...
}

The following constructors are proposed:

QuadratureRule(const std::vector<Real>&, Real);
QuadratureRule(const std::vector<Real>&, const std::vector<Real>&);
QuadratureRule(Dimen , Number s);

and the following accessors are provided:

Dimen dim() const;
Number size() const;
std::vector<Real> coords() const;
std::vector<Real>::const_iterator point(Number i = 0) const;
std::vector<Real>::iterator point(Number i = 0);
std::vector<Real>::const_iterator weight(Number i = 0) const;
std::vector<Real>::iterator weight(const Number i = 0);

Some utilities are also helpful:

void point(std::vector<Real>::iterator&, Real, std::vector<Real>::iterator&, Real);
void point(std::vector<Real>::iterator&, Real, Real, std::vector<Real>::iterator&, Real);
void point(std::vector<Real>::iterator&, Real, Real, Real,std::vector<Real>::iterator&, Real);
void coords(std::vector<Real>::iterator&, Dimen, std::vector<Real>::const_iterator&);
void coords(std::vector<Real>::const_iterator);
void coords(const std::vector<Real>&);
void coords(Real);
void weights(const std::vector<Real>&);
void weights(Real);
friend std::ostream& operator<<(std::ostream&, const QuadratureRule&);

The main task of this class is to load quadrature points and weights. Thus, there are a lot of member functions to load these values. Some of them have a general purpose (for instance to build quadrature rules from tensor or conical products of 1D rules) and others are specific to one quadrature rule:

//tensor and conical product
 QuadratureRule& tensorRule(const QuadratureRule&, const QuadratureRule&);
 QuadratureRule& tensorRule(const QuadratureRule&, const QuadratureRule&, const QuadratureRule&);
 QuadratureRule& conicalRule(const QuadratureRule&, const QuadratureRule&);
 QuadratureRule& conicalRule(const QuadratureRule&, const QuadratureRule&, const QuadratureRule&);
//nodal tensor product rules for quadrangle and hexahedron
 QuadratureRule& quadrangleNodalRule(const QuadratureRule&);
 QuadratureRule& hexahedronNodalRule(const QuadratureRule&);
//1D Gauss rules
 QuadratureRule& gaussLegendreRules(Number);
 QuadratureRule& gaussLobattoRules(Number);
 QuadratureRule& ruleOn01(Number);
//1D Newton-Cotes closed rules (P_k node rules on [0,1])
 QuadratureRule& trapezoidalRule();
 QuadratureRule& simpsonRule();
 QuadratureRule& simpson38Rule();
 QuadratureRule& booleRule();
//Grundmann-Moller rules for n dimensional simplex
 QuadratureRule& tNGrundmannMollerRule(int, Dimen);
 void TNGrundmannMollerSet(int);    //utility for Grundmann-Moller
//special (Misc) rules for unit Triangle { x + y < 1 , 0 < x,y < 1}
 QuadratureRule& t2P2MidEdgeRule();
 QuadratureRule& t2P2HammerStroudRule();
 QuadratureRule& t2P3AlbrechtCollatzRule();
 QuadratureRule& t2P3StroudRule();
 QuadratureRule& t2P5RadonHammerMarloweStroudRule();
 QuadratureRule& t2P6HammerRule();
//special (Misc) rules for unit Tetrahedron { x + y + z < 1 , 0 < x,y,z < 1 }
 QuadratureRule& t3P2HammerStroudRule();
 QuadratureRule& t3P3StroudRule();
 QuadratureRule& t3P5StroudRule();
//special (Misc) rules for unit pyramid { 0 < x,y < 1 - z , 0 < z < 1 }
 QuadratureRule& pyramidRule(const QuadratureRule&);//conical product
 QuadratureRule& pyramidStroudRule();               //degree 7, 48 points
//symmetrical Gauss rules for any shape
 QuadratureRule& symmetricalGaussTriangleRule(Number);    //degree up <= 20
 QuadratureRule& symmetricalGaussQuadrangleRule(Number);  //odd degree <= 21
 QuadratureRule& symmetricalGaussTetrahedronRule(Number); //degree <= 10
 QuadratureRule& symmetricalGaussHexahedronRule(Number);  //odd degree <= 11
 QuadratureRule& symmetricalGaussPrismRule(Number);       //degre <= 10
 QuadratureRule& symmetricalGaussPyramidRule(Number);     //degree <= 10

Here is a simple example of how to use quadrature objects :

Quadrature* q=findQuadrature(_triangle,_GaussLegendreRule, 3);
Real S=0, x,y;
Number k=0;
for(Number i =0;i<q->quadratureRule.size();i++,k+=2)
{
  x=q->quadratureRule.coords()[k];
  y=q->quadratureRule.coords()[k+1];
  S+=q->quadratureRule.weights()[i]*std::sin(x*y);
}
std::cout<<"S="<<S;

How to add a new quadrature formula ?#

When you want to add a new quadrature formula on a unit element, say emph{geomelt},

  • you have to modify the member function :

    Quadrature::geomelt Quadrature (QuadRule rule, Number deg)

by adding in the right case statement the properties of your quadrature formula

  • to add in QuadratureRule class the member function defining the quadrature points and weights.

Be care with the type and the number (degree) defining your quadrature formula, because they can be used by another formula. To avoid this difficulty, it is possible to create new type of quadrature. In that case the enumeration QuadRule has to be modified, implying to update the dictionaries and may be, the Quadrature::bestQuadRule() static function.

Integration methods for singular kernels#

To deal with single or double integral involving a kernel with a singularity, XLiFE++ provides some additional classes.

DuffyIM class#

This class deals with double integral over segments involving 2d kernel \(K\) with \(\log|x-y|\) singularity, in other words:

\[\int_{S_1}\int_{S_2} p_1(x)\,K(x,y)\,p_2(y)\,dy\,dx\]

For adjacent elements (sharing only one vertex) a Duffy transform is used. For self influence (\(S_1=S_2\)) two methods are proposed:

  • one based on a splitting of the unit square \(]0,1[\times]0,1[\) in \(n_y\) decreasing rectangles \(]0,1[\times]\frac{1}{2^k},\frac{1}{2^{k-1}}[,\ k=1,n-1\) and \(]0,1[\times]0,\frac{1}{2^{n-1}}[\).

  • one based on diagonal splitting and using a \(t^p\) transform in order to concentrate the quadrature points in the neighbor of the diagonal \(x=y\) (for more details see the separate documentation emph{quadrature_self_influence_2D}). This is the default one with \(p=5\).

class DuffyIM : public DoubleIM
{
 public:
 Quadrature* quadSelfX, *quadSelfY;//quadratures on segment [0,1] for self influence
 Quadrature* quadAdjtX, *quadAdjtY;//quadratures on segment [0,1] for adjacent elements
 Number ordSelfX, ordSelfY;    //order of quadratures for self influence
 Number ordAdjtX, ordAdjtY;    //order of quadratures for adjacent elements
 Number selfOrd;               //order of t^p transform or number of number of layers(def=5)
 bool useSelfTrans;              //use improved method for self influence (def=true)

 DuffyIM(IntegrationMethodType);         //default constructor
 DuffyIM(Number oX=6, Number oY=6);  //full constructor
 DuffyIM(QuadRule qsX, Number osX, QuadRule qsY, Number osY, QuadRule qaX, Number oaX, QuadRule qaY, Number oaY, Number so=5, bool ust=true);
 DuffyIM(const Quadrature&);             //full constructor from a quadrature
}

The class provides computation functions regarding geometrical configuration of segments:

template<typename K>
 void computeIE(...) const;
 void SelfInfluences(...) const;
 void SelfInfluencesTP(...) const;
 void AdjacentSegments(...) const;
 void k4(...) const;
 void k5(...) const;

The computation precision is very sensitive to the order of quadrature used in y direction. When using the first method to compute the self influence coefficients, to get very accurate results in the case of P2 mesh, very high order quadrature must be involved, for instance

DuffyIM dufim(_GaussLegendreRule,60,_GaussLegendreRule,60, _GaussLegendreRule,60,_GaussLegendreRule,60,5,false);

which lead to 300 quadrature points in each direction for self-influence coefficients!

Using the second method improves drastically the efficiency of the computation :

DuffyIM dufim(_GaussLegendreRule,30,_GaussLegendreRule,30, _GaussLegendreRule,50,_GaussLegendreRule,50,5,true);

The following picture shows the convergence rates of th BEM (single layer) in case of the diffraction (\(k=1.35\)) of a plane wave on a disk (radius 1). It can be noted that with a very low quadrature (red curve) the convergence rate is not captured at all, with a very high quadrature using the first method (cyan curve) the convergence rate becomes hard to capture when refining the mesh and finally the second method (black curve) allows to well capture the convergence rate with a reasonable number of quadrature points.

finiteElements (png)

SauterSchwabIM class#

This class deals with double integral over triangles involving 3d kernel \(K\) with \(|x-y|^{-1}\) singularity, say

\[\int_{T_1}\int_{T_2} p_1(x)\,K(x,y)\,p_2(y)\,dy\,dx\]
class SauterSchwabIM : public DoubleIM
{
 public:
  Quadrature* quadSelf;    //quadrature for self influence
  Quadrature* quadEdge;    //quadrature for elements adjacent by edge
  Quadrature* quadVertex;  //quadrature for elements adjacent by vertex
  Number ordSelf;        //order of quadrature for self influence
  Number ordEdge;        //order of quadrature for edge adjacence
  Number ordVertex;      //order of quadrature for vertex adjacence

  SauterSchwabIM(Number =3); //basic constructor (order 3)
  SauterSchwabIM(Quadrature&); //full constructor from quadrature object
}

LenoirSalles2dIM and LenoirSalles3dIM classes#

The LenoirSalles2dIM class can compute analytically

\[-\frac{1}{2\pi}\int_{S_1}\int_{S_2} p_1(x)\,\log|x-y|\,p_2(y)\,dy\,dx \ \ \ \mathrm{(single\;layer)}\]
\[\frac{1}{2\pi}\int_{S_1}\int_{S_2} p_1(x)\,\frac{(x-y).n_y}{|x-y|^2}\,p_2(y)\,dy\,dx \ \ \ \text{(double layer)}\]

where \(p_1\) and \(p_2\) are either the P0 or P1 shape functions on segments \(S_1\) and \(S_2\) and the LenoirSalles3dIM class computes analytically

\[\frac{1}{4\pi}\int_{T_1}\int_{T_2} p_1(x)\,\frac{1}{|x-y|}\,p_2(y)\,dy\,dx \ \ \ \text{(single layer)}\]
\[-\frac{1}{4\pi}\int_{T_1}\int_{T_2} p_1(x)\,\frac{(x-y).n_y}{|x-y|^3}\,p_2(y)\,dy\,dx \ \ \ \text{(double layer)}\]

where \(p_1\) and \(p_2\) are the P0 shape functions (say \(1\)) on triangles \(T_1\) and \(T_2\).

These two classes have no member data and only one basic constructor.

LenoirSalles2dIR and LenoirSalles3dIR classes#

The LenoirSalles2dIR class can compute analytically

\[-\frac{1}{2\pi}\int_{S} \log|x-y|\,p(y)\,dy\,dx \ \ \ \text{(single layer)}\]
\[\frac{1}{2\pi}\int_{S}\frac{(x-y).n_y}{|x-y|^2}\,p(y)\,dy\,dx \ \ \ \text{(double layer)}\]

where \(p\) is either the P0 or P1 shape functions on segment \(S\) and the LenoirSalles3dIR class that computes analytically

\[\frac{1}{4\pi}\int_{T}\frac{1}{|x-y|}\,p(y)\,dy\,dx \ \ \ \text{(single layer)}\]
\[-\frac{1}{4\pi}\int_{TS}\frac{(x-y).n_y}{|x-y|^3}\,p(y)\,dy\,dx \ \ \ \text{(double layer)}\]

where \(p\) is the P0 or P1 shape functions on triangle \(T\).

These two classes have no member data and only one basic constructor.

All the previous classes provides, a clone method, access to the list of quadratures if there are ones and an interface to the computation functions:

virtual LenoirSalles2dIM* clone() const;  //covariant
virtual std::list<Quadrature*> quadratures() const; //list of quadratures
template<typename K>
void computeIE(const Element* S, const Element* T, AdjacenceInfo& adj, const KernelOperatorOnUnknowns& kuv, Matrix<K>& res, IEcomputationParameters& iep, Vector<K>& vopu, Vector<K>& vopv, Vector<K>& vopk) const;

CollinoIM class#

The CollinoIM class is a wrapper to an integration method developed by F. Collino to deal with some integrals involved in 3D Maxwell BEM when using Raviart-Thomas elements of order 1 (triangle). More precisely, it can compute the integrals:

\[\int_{\Gamma}\int_{\Gamma}\left(k\,H(k;x,y)\,wj(y).w_i(x)-\frac{1}{k}H(k;x,y)\,\text{div}\,w_j(y)\,\text{div}\,w_i(x)\right)\]

and

\[\int_{\Gamma}\int_{\Gamma}\left(\nabla_y H(k;x,y)\times w_j(y)\right).w_i(x),\]

where \((w_i)_{i=1,n}\) denote the Raviart-Thomas shape functions and \(H(k;x,y)\) the Green function of the Helmholtz equation (wave number k) in the 3D free space. The class looks like

enum ComputeIntgFlag {_computeI1=1, _computeI2,_computeBoth};

class CollinoIM : public DoubleIM
{
 private:
  myquad_t* quads_;
public:
 Number ordSNear; //default 12
 Number ordTNear; //default 64
 Number ordTFar;  //default 3
 Real eta;        //default 3.
 ComputeIntgFlag computeFlag;

 CollinoIM();
 CollinoIM(ComputeIntgFlag cf, Number otf, Number otn, Number osn, Real e);
 CollinoIM(const CollinoIM&);
 ~CollinoIM();
 virtual CollinoIM* clone() const;
 CollinoIM& operator=(const CollinoIM&);

 virtual std::list<Quadrature*> quadratures() const;
 virtual void print(std::ostream& os) const;
 template<typename K>
 void computeIE(const Element*, const Element*, AdjacenceInfo&, const KernelOperatorOnUnknowns&, Matrix<K>&, IEcomputationParameters&,Vector<K>&,Vector<K>&,Vector<K>&) const;
}

quads_ is a pointer to a quadrature structure provided by the Collino package, ordSNear, ordTNear, ordTFar are order of quadrature rules used, eta is a relative distance used to separate far and near triangle interactions and computeFlag allows to choose the integrals that have to be computed. computeIE() is the main computation function calling the real computation function (ElemTools_weakstrong_c()) provided by the Collino package (see files {itshape Collino.hpp} and Collino.cpp).

The IntegrationMethods class#

The IntegrationMethods class collects some IntgMeth objects that handle an integration method pointer with some additional parameters:

class IntgMeth
{
  public:
   const IntegrationMethod* intgMeth;
   FunctionPart functionPart; //_allFunction, _regularPart, _singularPart
  Real bound;              //bound value
}

The bound value may be used to select an integration method regarding a criterion. For instance, in BEM computation the criterion is the relative distance between the centroids of elements. Besides, using functionPart member, different integration method may be called on different part of the kernel, see Kernel class. This class has only some constructors and print stuff:

IntgMeth(const IntegrationMethod& im, FunctionPart fp=_allFunction, Real b=0);
IntgMeth(const IntgMeth&);
~IntgMeth();
IntgMeth& operator=(const IntgMeth&);
void print(std::ostream&) const;
void print(PrintStream&) const;
friend ostream& operator<<(ostream&, const IntgMeth&)

For safe multi-threading behavior, copy constructor and assign operator do a full copy of IntegrationMethod object.

The IntegrationMethods class is simply a vector of IntMeth object:

class IntegrationMethods
{
 public:
  vector<IntgMeth> intgMethods;
  typedef vector<IntgMeth>::const_iterator const_iterator;
  typedef vector<IntgMeth>::iterator iterator;
 ...
}

This class provides many constructors depending on the number of integration methods given (up to 3 at this time), to some shortcuts :

IntegrationMethods() {};
IntegrationMethods(const IntegrationMethod&,FunctionPart=_allFunction,Real=0);
...
void add(const IntegrationMethod&, FunctionPart=_allFunction,Real=0);
void push_back(const IntgMeth&);

To handle more than 3 integration methods, use the add member function.

Besides, the class offers some accessors and print stuff:

const IntgMeth& operator[](Number) cons ;
vector<IntgMeth>::const_iterator begin() const;
vector<IntgMeth>::const_iterator end() const;
vector<IntgMeth>::iterator begin();
vector<IntgMeth>::iterator end();
bool empty() const {return intgMethods.empty();}
void print(ostream&) const;
void print(PrintStream&) const;
friend ostream& operator<<(ostream&, const IntegrationMethods&);

In BEM computation, the following relative distance between two elements (\(E_i\), \(E_j\)) is used:

\[\DeclareMathOperator{\diam}{diam} dr(E_i,E_j)=\frac{||C_i-C_j||}{\max(\diam E_i,\diam E_j)}\mathrm{\;where\;}C_i\mathrm{\;is\;the\;centroid\;of\;} E_i.\]

So defining for instance

IntegrationMethods ims(SauterSchwabIM(4), 0., symmetrical_Gauss, 5, 1., symmetrical_Gauss, 3);

the BEM computation algorithm will perform on function (all part):

Sauter-Schwab with quadrature of order 4 on segment

if \(dr(E_i,E_j)=0\)

Symmetrical gauss quadrature of order 5 on triangle

if \(0 < dr(E_i,E_j) \leq 1\)

Symmetrical gauss quadrature of order 3 on triangle

if \(dr(E_i,E_j) > 1\)

Standard integration method#

For various integration purpose, XLiFE++ provides the uniform rectangle, trapeze and Simpson method (\(h=\frac{b-a}{n}\)):

\[\begin{split}\begin{array}{lll} \textrm{rectangle}&: &\displaystyle \int_a^b f(t)\,dt\sim h\sum_{i=0,n-1} f(a+ih) \\[5mm] \textrm{trapeze} & : &\displaystyle \int_a^b f(t)\,dt\sim \frac{h}{2} \left(f(a)+4\sum_{i=1,n/2} f(a+(2i-1)h) +2\sum_{i=1,n/2-1} f(a+2ih)+f(b)\right)\ \ (n \textrm{ even})\\[5mm] \textrm{Simpson} & : &\displaystyle \int_a^b f(t)\,dt\sim \frac{h}{3} \left(f(a)+2\sum_{i=1,n-1} f(a+ih) + f(b)\right) \end{array}\end{split}\]

with \(f\) a real or complex function. The rectangle method integrates exactly P0 polynomials, the trapeze method integrates exactly P1 polynomials whereas the Simpson method integrates exactly P3 polynomials. They respectively approximate the integral with order 1, 2 and 3.

For each of them, four template functions (with names rectangle, trapz, simpson) are provided according to the user gives the values of \(f\) on a uniform set of points, the function \(f\) or a function \(f\) with some parameters (e.g. trapeze method):

template<typename T, typename Iterator>
T trapz(Number n, Real h, Iterator itb, T& intg);
template<typename T>
T trapz(const std::vector<T>& f, Real h);
T trapz(T(*f)(Real), Real a, Real b, Number n);
T trapz(T(*f)(Real, Parameters&), Parameters& pars, Real a, Real b, Number n);

XLiFE++ provides also an adaptive trapeze method using the improved trapeze method (\(0.25(b-a)(f(a)+2f((a+b)/2)+f(b))\)) to get an estimator. The user has to give its function (with parameters if required), the integral bounds a tolerance factor (\(10^{-6}\) if not given):

template<typename T>
T adaptiveTrapz(T(*f)(Real), Real a, Real b, Real eps=1E-6);
T adaptiveTrapz(T(*f)(Real,Parameters&), Parameters& pars, Real a, Real b, Real eps=1E-6)

Hint

Because at the first step, the adaptive method uses 5 points uniformly distributed, the result may be surprising if unfortunately the function takes the same value at these points!

Discrete Fast Fourier Transform (FFT)#

XLiFE++ provides the standard 1D discrete fast Fourier transform with \(2^n\) values:

\[g_k = \sum_{j=0,n-1} f_je^{-2i\pi\frac{jk}{n}}.\]

FFT and inverse FFT are computed using some functions addressing iterators on a collection of real or complex values:

template<class Iterator>
void  fft(Iterator ita, Iterator itb, Number log2n);
void ifft(Iterator ita, Iterator itb, Number log2n);

Computations from real or complex vectors is also available, but the results are always some complex vectors:

template<typename T>
vector<Complex>&  fft(vector<T>& f, vector<Complex>& g);
vector<Complex>& ifft(vector<T>& f, vector<Complex>& g);

The following example shows how to use them:

Number ln=6, n=64;
Vector<Complex> f(n),g(n),f2(n);
for(Number i=0; i<n; i++) f[i]=std::sin(2*i*pi_/(n-1));
fft(f.begin(),g.begin(),ln);
ifft(g.begin(),f2.begin(),ln); //f2 should be very close to f
// or
fft(f,g); ifft(g,f2);

Integration methods for oscillatory integrals#

Up to now, only one method is provided to compute 1D oscillatory integrals based on the Filon’s method.

FilonIM class#

The Filon’s method XLiFE++ proposes is designed to compute an approximation of the following oscillatory integral:

\[I(x)=\int_0^T f(t)\,e^{-ixt}\]

where \(f\) is a slowly varying function with real or complex values (template type).

Considering a uniform grid \(t_n=n\,dt,\ \forall n=0,N\) and an interpolation space on this grid, say \(\text{vect }(w_n)_{n=0,N}\) where \(w_n\) are polynomial on each segment \([t_{n-1},t_n]\); the Filon’s method consists in interpolating the function \(f\):

\[f(t)=\sum_{n=1,N} a_n w_n(t).\]

Substituting \(f\) by its interpolation in integral and collecting terms in a particular way, the integral \(I(x)\) is thus approximated as follows:

\[I_N(x)=dt\sum_{j=1,p} C_j(x) \sum_{n=1,N} f(t_n^j)exp^{-ixt_{n-1}} + dt^2\sum_{j=1,p} C'_j(x) \sum_{n=1,N} f'(t_n^j)exp^{-ixt_{n-1}}\]

where \(Cj(x)\) and \(C'_j\) are coefficients of the form :math:` int_0^1 tau_j(s) exp^{-i,x,s,dt}ds` with \(\tau_j\) some shape functions on the segment \([0,1]\) ant \(t_n^j\) the support of the \(j^{th}\) DoF on the segment \([t_{n-1},t_n]\). The second sum in \(I_N\) appears only when using Hermite interpolation; for Lagrange interpolation, \(C'_j(x)=0\).

If the values \(f(t_n^j)_{n=0,N}\) and \(f'(t_n^j)_{n=0,N}\) (if Hermite interpolation) are pre-computed, the computation of \(I_N(x)\) for many values of \(x\) may be very efficient!

The FilonIMT is a template class, FilonIM being its complex specialization:

template <typename T = Complex>
class FilonIMT : public SingleIM
{
 typedef T(*funT)(Real);  // T function pointer alias
 protected:
  Number ord_;        //interpolation order of (0,1 or 2)
  Real tf_;           //upper bound of integral (lower bound is 0)
  Real dt_;           //grid step if uniform
  Number ns_;         //number of segments
  Vector<T> fn_;        //values of f (and df if required) on the grid
  Vector<Real> tn_;   //grid points
  ...
}

ord_ corresponds to the interpolation used : 0 for Lagrange P0, 1 for Lagrange P1 and 2 for Hermite P3. The values \(f(t_n^j)_{n=0,N}\) and \(f'(t_n^j)_{n=0,N}\) are collected (only one copy) in the same vector with the following storage:

  • Lagrange P0 : \(f(dt/2) f(3\,dt/2),\,\dots\, f((N-1/2)dt)\) (\(N\) values)

  • Lagrange P1 : \(f(0) f(dt),\,\dots\, f(N\,dt)\) (\(N+1\) values)

  • Hermite P3 : \(f(0) f'(0) f(dt) f'(dt),\,\dots\, f(N\,dt) f'(N\,dt)`\) (\(2(N+1)\) values)

The FilonIMT class provides several constructors that pre-compute the values of \(f\) and \(f'\) from user’s functions of the real variable with real or complex values. More precisely, the following types are available:

Real f(Real t) {...}
Complex f(Real t) {...}
Real f(Real t, Parameters& pars) {...}
Complex f(Real t, Parameters& pars) {...}

It is also possible to construct a FilonIMT object passing the values of \(f\) at uniformly distributed points on:math:` [0,t_f]`. In that case, Filon of order 1 is selected. So the class looks like

typedef T(*funT)(Real);
typedef T(*funTP)(Real, Parameters& pa);
FilonIMT();
FilonIMT(Number o,Number N,Real tf,funT f);
FilonIMT(Number o,Number N,Real tf,funT f,funT df);
FilonIMT(Number o,Number N,Real tf,funTP f,Parameters& pars);
FilonIMT(Number o,Number N,Real tf,funTP f,funTP df, Parameters& pars);
FilonIMT(const Vector<T>& vf, Real tf);
void init(Number N,funT f,funT df);
void init(Number N,funTP f,funTP df,Parameters& pars);
Number size() const {return tn_.size();}     //grid size
template <typename S>
Complex coef(const S& x, Number j) const;  //Filon's coefficients
Complex compute(const S& x) const;           //compute I(x)
Complex operator()(const S& x) const         //compute I(x)
virtual void print(std::ostream& os) const;    //print FilonIMT on stream

This class is quite easy to use, for instance to compute the integral

\[I(x)=\int_0^{10} e^{-t}\,e^{-ixt}\]

by the P1-Filon method:

Complex f(Real x) {return Complex(std::exp(-x),0.);}
...
FilonIM fim(1, 100, 10, f);
Complex y = fim(0.5);
// or in a more compact syntax if only one evaluation
Complex y = FilonIM(1, 100, 10, f) (0.5);

To invoke Hermite P3 Filon method, define also the derivative of \(f\):

Complex f(Real x)  {return Complex(exp(-x),0.);}
Complex df(Real x) {return Complex(-exp(-x),0.);}
...
FilonIM fim(2, 100, 10, f, df);
Complex y = fim(0.5);

Hint

The P0 Filon method is of order 1, the P1 Filon is of order 2 while the Hermite P3 Filon is of order 4. The Hermite P3 Filon is less stable than the Lagrange Filon methods!

Filonconvergence (png)

See also

  • library= finiteElements,

  • header= Quadrature.hpp QuadratureRule.hpp IntegrationMethod.hpp,

  • implementation= Quadrature.cpp QuadratureRule.cpp IntegrationMethod.cpp,

  • test= test_Quadtrature.cpp,

  • header dep= config.h, utils.h, LagrangeQuadrangle.hpp, LagrangeHexahedron.hpp, mathsResources.h.