Parallelogram
#
To define a parallelogram, give 3 vertices (not aligned).
There is a parameter for each of them: _v1
, _v2
, and _v4
. These parameters take 2D or 3D points.
_nnodes
can take one single value or an explicit list of 2 or 4 values (or a Numbers
object) and _hsteps
can take one real value, an explicit list of 4 real values or a Reals
object.
If required, can give the names of main domain and side domains as explained in Geometry definition:
Parallelogram p1(_v1=Point(0.,0.), _v2=Point(2.,0.), _v4=Point(0.,1.),
_nnodes={20, 10, 20, 10}, _domain_name="Omega", _side_names="Gamma");
Parallelogram p2(_v1=Point(0.,0.), _v2=Point(2.,0.), _v4=Point(0.,1.),
_nnodes={20, 10}, _domain_name="Omega", _side_names="Gamma");
Both parallelograms of previous examples are identical. This explains the ability to give 2 or 4 values for _nnodes
.
Let’s summarize information about geometrical keys on paralellograms:
key(s) |
authorized types |
examples |
---|---|---|
|
|
Hint
Parametrization of the parallelogram \((v_1,v_2,v_4)\) is :