
Presentation of XLIFE++
Eigenvalues Solver & OpenMP

Manh-Ha NGUYEN

Unité de Mathématiques Appliquées,
ENSTA - Paristech

25 Juin 2014

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 1/19



EigenSolver

1 EigenSolver

2 OpenMP

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 2/19



EigenSolver

+ Independent from external packages (BLAS, LAPACK, etc, ...)

+ Capable of solving large eigenvalues problems with efficiency

+ Simple utilization on the level of TermMatrix

+ Easy to develop new eigenvalue methods

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 3/19



Basing on two modules:

EigenCore: Lapack-like functions for solving small size eigenvalue problem

EigenSparse: Implementation of eigenvalue solving methods for sparse matrices

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 4/19



+ Simple and easy to use

+ Lapack-like functions

+ Tool for small eigenvalues problem

Components

utils

decomposition

eigenSolver

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 5/19



1 utils
MatrixEigenDense dense row by row matrix
VectorEigenDense vector by line or column

2 decomposition
Henssenberg
QR
Tridiagonalization
Real/Complex Schur

3 eigenSolver
SelfAdjoint
GeneralizedSelfAdjoint
Real/Complex EigenSolver

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 6/19



Example:

HessenbergDecomposition<MatrixEigenDense<Real> > rHess ( 5 ) ;
Tridiagonal izat ion <MatrixEigenDense<Real> > t r i d i a g ( 5 ) ;
RealSchur<MatrixEigenDense<Real> > rSchur ( 5 ) ;

MatrixEigenDense<Real> rMatTest ( 5 ) ;
rMat . loadFromFile ( dataPathTo ( " E igenSo lver In te rn / rSym5 . data " ) . c_s t r ( ) ) ;

rHess . compute ( rMat ) ;
s td : : out << " Hessenberg mat r i x " << rHess . matrixH ( ) << std : : endl ;
s td : : out << " Un i ta ry mat r i x " << rHess . matrixQ ( ) <<std : : endl ;

t r i d i a g . compute ( rMat ) ;
s td : : out << " Un i ta ry mat r i x " << t r i d i a g . matrixQ ( ) << " \ n " ;

rSchur . compute ( rMat ) ;
s td : : out << "T mat r i x " << rSchur . matrixT ( ) << std : : endl ; ;
s td : : out << " Un i ta ry mat r i x " << rSchur . matrixU ( ) << std : : endl ;

SelfAdjointEigenSolver <MatrixEigenDense<Real> > eigStd (20) ;

MatrixEigenDense<Real> rMat (20) ;
rMat . loadFromFile ( dataPathTo ( " E igenSo lver In te rn / rSymPos20 . data " ) . c_s t r ( ) ) ;

Vector<Real> rE igVa l = eigStd . eigenvalues ( ) ;
MatrixEigenDense<Real> rEigVec = eigStd . eigenvectors ( ) ;
s td : : out << " Eigen values " << rE igVa l << " \ n " ;
s td : : out << " Eigen vec to rs " << rEigVec << " \ n " ;

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 7/19



Implementation of different eigenvalues solver methods. Up to now, XLIFE++ has had two
methods corresponding different cases

Krylov-Schur: Effective in computing eigenvalues in the end of the spectrum of matrix A if
these eigenvalues are well seperated from the remaining spectrum or if it is applied to a
shifted and inverted matrix operator (A − σI)−1. Like Arpack, it is is capable of solving large
scale symmetric, non-symmetric, and generalized eigenproblems

Davidson: Capable of solving standard and generalized symmetric eigen problems. In some
cases, it could find eigenvalues and the corresponding eigenvalues faster than Krylov-Schur.

Krylov-Schur is used as a default method
to search for eigenvalues and the corre-
sponding eigenvectors.

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 8/19



Implementation of different eigenvalues solver methods. Up to now, XLIFE++ has had two
methods corresponding different cases

Krylov-Schur: Effective in computing eigenvalues in the end of the spectrum of matrix A if
these eigenvalues are well seperated from the remaining spectrum or if it is applied to a
shifted and inverted matrix operator (A − σI)−1. Like Arpack, it is is capable of solving large
scale symmetric, non-symmetric, and generalized eigenproblems

Davidson: Capable of solving standard and generalized symmetric eigen problems. In some
cases, it could find eigenvalues and the corresponding eigenvalues faster than Krylov-Schur.

Krylov-Schur is used as a default method
to search for eigenvalues and the corre-
sponding eigenvectors.

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 8/19



Implementation of different eigenvalues solver methods. Up to now, XLIFE++ has had two
methods corresponding different cases

Krylov-Schur: Effective in computing eigenvalues in the end of the spectrum of matrix A if
these eigenvalues are well seperated from the remaining spectrum or if it is applied to a
shifted and inverted matrix operator (A − σI)−1. Like Arpack, it is is capable of solving large
scale symmetric, non-symmetric, and generalized eigenproblems

Davidson: Capable of solving standard and generalized symmetric eigen problems. In some
cases, it could find eigenvalues and the corresponding eigenvalues faster than Krylov-Schur.

Krylov-Schur is used as a default method
to search for eigenvalues and the corre-
sponding eigenvectors.

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 8/19



Implementation of different eigenvalues solver methods. Up to now, XLIFE++ has had two
methods corresponding different cases

Krylov-Schur: Effective in computing eigenvalues in the end of the spectrum of matrix A if
these eigenvalues are well seperated from the remaining spectrum or if it is applied to a
shifted and inverted matrix operator (A − σI)−1. Like Arpack, it is is capable of solving large
scale symmetric, non-symmetric, and generalized eigenproblems

Davidson: Capable of solving standard and generalized symmetric eigen problems. In some
cases, it could find eigenvalues and the corresponding eigenvalues faster than Krylov-Schur.

Krylov-Schur is used as a default method
to search for eigenvalues and the corre-
sponding eigenvectors.

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 8/19



EigenSparse, like other libraries of XLIFE++, utilizes trait classes to define interfaces for the
scalar field, multi-vector and matrix operators. Only three template parameters should be
provided, could one use the available eigenvalues solver of XLIFE++ with ease.
Three essential template parameters:

1 scalar type, describing the field over which the vectors and operators are defined
2 multivector type over the given scalar field, providing a data structure that denotes a collection

of vectors
3 operator type over the given scalar field, providing a linear operators used to define

eigenproblems

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 9/19



Structure of EigenSparse

SolverManager

ST,MV,OP

Eigenproblem

ST,MV,OP

StatusTest

ST,MV,OP

SortManager

ST,MV,OP

OrthoManager

ST,MV

OutputManager

ST

Eigensolver

ST,MV,OP

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 10/19



1 SolverManager:
encapsulate all functionalities of eigenSparse
enable an easy-to-use interface to eigenSparse

2 Eigenproblem defines a minimum interface expected of an eigenvalue problem
matrix A and M of Ax = λMx
initial vector
number of eigenvalues to be computed

3 StatusTest defines some criterion to stop solver iteration as provided
some convergence statisfied
some parts of current solutions are accurate enough and removed from iteration (locking)
solver has performed a sufficient or excessive number of iterations

4 SortManager performs the sorting in a specific manner
5 OrthoManager provides different approaches of orthogonalization and orthonormalization

(Euclidean inner product, M-inner product, ...etc)
6 OutputManager controls what output is printed and where output is printed to with regard to

the verbosity.
7 EigenSolver implement specific eigenvalues solving methods. Up to now, there are two

projection methods implemented:
Krylov-Schur: Krylov subspace and Schur decomposition
Davidson: non-Krylov subspace

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 11/19



Example:
1 compute eigenvalues and the corresponding eigenvector in regular mode

EigenElements e igs=eigenSolver (A , B, 10 , "SM" ) ;

2 in several cases, eigenvalues close to the reasonable shift σ are expected

EigenElements e igs=eigenSolver (A , B, 10 , Complex ( 1 0 . 0 , 0 . 0 ) ;

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 12/19



OpenMP

1 EigenSolver

2 OpenMP

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 13/19



OpenMP

OpenMP(Open Multi-Processing) is:

shared memory processing (SMP)

simple to use

capable of paralleling with a reasonable performance

In XLIFE++, two consuming-time operations have been paralleled with OpenMP

matrix-vector multiplication

matrix factorization

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 14/19



Matrix-vector multiplication largely serves for

iterative solver

eigensolver

Among sparse matrix format, compressed storage row (CSR) is naturally suitable for parallelizing
sparse matrix-vector multiplication (SpMV).
Common data structure of a m × n CSR matrix

values[nz] store the value of each non-zero element in matrix A

colIndex[nz] stores the column index of each element in val[nz] array

rowPointer[m+1] stores the index of the first non-zero element of each row and rowPointer[m]
= nz

Constraint on the problem of load balancing, scheduling overhead and synchronization overheads,
it’s better to apply the row partitioning scheme: The matrix will be partitioned into blocks of row by
the number of threads.

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 15/19



Matrix-factorization mainly serves for direct solver Ax = y
XLIFE++ has supported some popular factorization methods: LU, LDLt and LDL*; all of them have
a parallelized version with OpenMP. Because of factorization algorithm, only skyline (or band or
profile) storage is suitable to be factorized.
Common data structure of a m × n skyline matrix

values[nz] store the value of diagonal, value of each non-zero row of lower part then value of
non-zero column of upper part in matrix A

colPointer[n] stores the index of the first non-zero element of each column of the upper part

rowPointer[m] stores the index of the first non-zero element of each row of the lower part

The idea behind multi-threaded factorization is simple: Instead of implementing the factorization
element by element as in the serial version, we make the algorithm work on block by block. For
each iteration, block on diagonal is processed then block on the row and column corresponding to
this diagonal block.

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 16/19



Some results with OpenMP
1 Test matrices

Matrix Domain ElementType NoSubdivision Order Size Nnz
Matrix1 Rectangle Triangle 20 2 40401 464601
Matrix2 Rectangle Quadrangle 15 3 51076 1267876
Matrix3 Rectangle Quadrangle 20 3 90601 2253001
Matrix4 Cube Tetrahedron 6 2 230945 6422657
Matrix5 Cube Hexahedron 10 2 1030301 64481201

2 Environment
Medoc server: 32 physical cores with Hyperthreading (64 logical cores), 110 GB RAM
Intel compiler 12.0.5 with GNU 4.6

3 Compilation options
-opt-prefetch -O3

Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 17/19



Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 18/19



Ha. NGUYEN Presentation of XLIFE++ 25 Juin 2014 19/19


	EigenSolver
	OpenMP

