
Advanced XLiFE++
Days 2016

june, 14-15, 2016

Unité de Mathématiques Appliquées
ENSTA ParisTech

Outline

1

• Vector unknown, multiple unknowns
• Understanding TermMatrix and TermVector
• Understanding Essential Conditions
• Edge element
• How to deal with time problem

Vector unknown

2

Vector unknown are involved when the space is a vector function spaces
for instance

elastic displacement: electric field :

XLiFE++ does not deal with power of space but deal with Hrot (or Hdiv) :

Space W(omega, interpolation(_Nedelec,_firstFamily, 1, Hrot), "W", false);
Unknown E (W, "E");

any vector function E of space W has the following representation :

To deal with vector function of V, XLiFE++ use the following

Space V(omega, interpolation_Lagrange, 1, H1), "V", false);
Unknown u (V, "u", 3); // 3-vector unknown

any vector function u of space V has the following representation :

scalar coefficient, vector basis

vector coefficient, scalar basis

Vector unknown

3

In both cases, unknowns are symbolically vector unknowns !

Differential operators, operations have to be consistent with vectors :

Space V(omega, interpolation_Lagrange, 1, H1), "V", false);
Unknown u (V, "u", 3); // 3-vector unknown
TestFunction v(u, "v"); // 3-vector test function
BilinearForm a = 2*mu*intg(omega, epsilon(u)%epsilon(v))

+ lambda*intg(omega, div(u)*div(v)) - omg2*intg(omega, u|v);

Space W(omega, interpolation(_Nedelec,_firstFamily, 1, Hrot), "W", false);
Unknown e(W, "E"); TestFunction q(e, "q");
BilinearForm a = intg(omega, curl(e)|curl(q)) - ome*intg(omega, e|q); inner product

 Explicit vector unknown u

 Implicit vector unknown e

BilinearForm b = intg(omega, u(1)*v(1));

Access to a component of an explicit vector unknown

vector unknown TermVector are stored as vector of vectors
vector unknown TermMatrix are stored as matrix of matrices

Multiple unknowns

4

It is easy to deal with problems with multiple unknowns of any kind

• Set as many Unknowns as you want
• Deal with them in bilinear form as you want (staying consistent)

Space H(omega,interpolation(_Lagrange,_standard, k-1, H1),"H",true);
Space V(omega,interpolation(_RaviartThomas,_standard, k, Hdiv), "V", true);
Unknown p(V, "p"); TestFunction q(p, "q"); // p=grad(u)
Unknown u(H, "u"); TestFunction v(u, "v");
BilinearForm a=intg(omega, p|q) + intg(omega, u*div(q)) - intg(omega, div(p)*v);

usage of vector unknowns, multiple unknowns have consequences on
algebraic representation TermVector and TermMatrix

Understanding TermMatrix and TermVector

5

TermMatrix and TermVector are the core of XliFE++

• TermMatrix mainly handles some matrix coefficients
• TermVector mainly handles some vector coefficients

In order to deal with multiple unknowns in a transparent way, in fact

• TermMatrix handles a list of SuTermMatrix, some
• TermVector handles a list of SuTermVector, some

Su means Single unknown

Think about a block representation

v1

v2

v3

u1 u2 u3

not necessarily squared

M11 M12

a single unknown TermMatrix is 1x1 block

Understanding TermMatrix and TermVector

6

This block representation (list of SuTermMatrix) is called "local" representation

• advantage : each SuTermMatrix has its own storage
• inconvenient : not well suited when factorize matrix or apply essential

condition

This is why in certain cicumstances , XLiFE++ is able to deal with a "global"
representation mixing all the unknowns

it may be memory expansive !

As a consequence, the order of the unknowns may play a role.
They are ranked in the order of creation but you can change the order by
setting the rank of an unknown :

Unknown p(V, "p"); TestFunction q(p, "q");
Unknown u(H, "u"); TestFunction v(u, "v");
setRanks(p, 4, u , 2); // u is before p

TestFunction have same rank as it related unknown

Understanding TermMatrix and TermVector

7

 Extract a block of a multiple unknown TermMatrix

...
Unknown p(V, "p"); TestFunction q(p, "q"); // p=grad(u)
Unknown u(H, "u"); TestFunction v(u, "v");
BilinearForm a=intg(omega, p|q) + intg(omega, u*div(q)) - intg(omega, div(p)*v);
TermMatrix A(a, "A");
TermMatrix Apq = A(p,q);

 Setting storage of a multiple unknown TermMatrix, sets storage to all SuTermMatrix,
may be to global representation

 Summing multiple unknowns TermMatrix may be complex process, summing and
concatenating same unknowns SuTermMatrix and insert SuTermMatrix

 Product of a multiple unknowns TermMatrix by a multiple unknowns TermVector
is done on each SuTermMatrix and produce a multiple unknowns TermVector
having row unknowns of TermMatrix

Similar management for TermVector

8

Dirichlet condition :

Transmission condition :

Periodicity condition :

Average condition :

Essential conditions are constraints in space, main types :

lcop = val or fun on D (one domain)
lcop1 on D1 + lcop2 on D2 = val or fun (two domains)

lcop, lcop1, lcop2 are linear combination of operator on unknowns
D, D1, D2 are domains where act esssential conditions

General expressions

Vector<Real> mapPM (const Point& P, Parameters& pa = defaultParameters)
{ Vector<Real> Q= P; Q.y-=1; return Q; } map Sigma+ -> Sigma-
EssentialCondition ecd= (u|sigmaM = 1) ; Dirichlet condition
EssentialCondition ect = (uM|gamma) - (uP|gamma) = f; Transmission condition
defineMap(sigmaP, sigmaM, mapPM);
EssentialCondition ecp = (u|sigmaP) - (u|sigmaM) = 0; Periodic condition

Essential conditions

9

• Collect essential conditions in a constraints system :

• Reduce by QR algorithm to a minimal system :

• Reduce problem to solve

(for Dirichlet condition)

General process to deal with many conditions (very powerful)

Collect EssentialCondition in a list : EssentialConditions

EssentialConditions ecs= (u|gammaM = 0) & (u|gammaP = 0) & ((u|sigmaP) - (u|sigmaM) = 0);
EssentialConditions ecs= (uM|sigmaM = 1) & (uP|sigmaP = 1) & ((uM|gamma) - (uP|gamma) = 0);

Conditions may be not consistent

Detects and eliminates redundant or conflicting constraints

BilinearForm a=intg(omega, grad(u)|grad(v));
TermMatrix A(a, intg(sigma,u) = 0);

Average condition

Essential conditions

may be memory expansive and time expansive when global constraints

Edge elements

10

Nice periodic table of Finite Elements

Used in XLiFE++ to deal with any order Edge/Face elements

Edge/Face elements

11

Not all implemented !

 on triangle : Raviart-Thomas, Nedelec Edge first and second family

 on tetrahedron : Nedelec Face and Nedelec Edge first families

Space V (omega, interpolation(_Nedelec,_ firstFamily, 1, Hrot), "V", false);
Unknown e(V,"E"); TestFunction q(e,"q");
BilinearForm a = intg(omega, curl(e)|curl(q)) - ome*intg(omega, e|q);
EssentialConditions ecs = (ncross(e) | gamma)=0;
...

basis function are get
from symbolic polynoms
representation

Dofs are moment dofs but they have virtual coordinates

Time regim problem

12

There is no specific tool to deal with time regim problem!

BUT it is easy to deal with. Leap-frog scheme for wave equation

TermMatrix A(intg(omega, grad(u)|grad(v));
TermMatrix M(m=intg(omega, u * v));
TermVector G(intg(omega, g*v)); // F = h(t)*G
// leap-frog scheme
Real c=1, dt=0.004, dt2=dt*dt, cdt2=c*c*dt2;
Number nbt=200; Real t=dt;
TermMatrix L; ldltFactorize(M, L);
TermVector zeros(u, omega, 0.);
TermVectors U(nbt);
U(1)=zeros; U(2)=zeros;
for(Number n=2; n<nbt; n++, t+=dt)

U(n+1)=2*U(n)-U(n-1)-factSolve(L,cdt2*(A*U(n))-dt2*h(t)*G);
saveToFile("U",U,vtu);

