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• Vector unknown, multiple unknowns 
• Understanding TermMatrix and TermVector
• Understanding Essential Conditions
• Edge element
• How to deal with time problem



Vector unknown
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Vector unknown are involved when the space is a vector function spaces
for instance 

elastic displacement: electric field :

XLiFE++ does not deal with power of space but deal with Hrot (or Hdiv) : 

Space W(omega, interpolation(_Nedelec,_firstFamily, 1, Hrot), "W", false);
Unknown E ( W, "E" );

any vector function E of space W has the following representation :  

To deal with vector function of V, XLiFE++ use the following 

Space V(omega, interpolation_Lagrange, 1, H1), "V", false);
Unknown u ( V, "u", 3 );   // 3-vector unknown

any vector function u of space V has the following representation :  

scalar coefficient, vector basis

vector coefficient, scalar basis



Vector unknown
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In both cases, unknowns are symbolically vector unknowns !

Differential operators, operations have to be consistent with vectors : 

Space V(omega, interpolation_Lagrange, 1, H1), "V", false);
Unknown u ( V, "u", 3 );         // 3-vector unknown
TestFunction v( u, "v" );         // 3-vector test function
BilinearForm a = 2*mu*intg(omega, epsilon(u)%epsilon(v) )  

+ lambda*intg(omega, div(u)*div(v)) - omg2*intg(omega, u|v);

Space W(omega, interpolation(_Nedelec,_firstFamily, 1, Hrot), "W", false);
Unknown e( W, "E" ); TestFunction q( e, "q" );
BilinearForm a = intg(omega, curl(e)|curl(q)) - ome*intg(omega, e|q); inner product

 Explicit vector unknown u

 Implicit vector unknown e

BilinearForm b = intg(omega, u(1)*v(1) );

Access to a component of an explicit vector unknown 

vector unknown TermVector are stored as vector of vectors
vector unknown TermMatrix are stored as matrix of matrices



Multiple unknowns
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It is easy to deal with problems with multiple unknowns of any kind 

• Set as many Unknowns as you want
• Deal with them in bilinear form as you want (staying consistent)

Space H(omega,interpolation(_Lagrange,_standard, k-1, H1),"H",true);
Space V(omega,interpolation(_RaviartThomas,_standard, k, Hdiv), "V", true);
Unknown p(V, "p");  TestFunction q(p, "q"); // p=grad(u)
Unknown u(H, "u");  TestFunction v(u, "v");
BilinearForm a=intg(omega, p|q) + intg(omega, u*div(q) ) - intg(omega, div(p)*v );   

usage of vector unknowns, multiple unknowns have consequences on 
algebraic representation TermVector and TermMatrix



Understanding TermMatrix and TermVector
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TermMatrix and TermVector are the core of XliFE++

• TermMatrix mainly handles some matrix coefficients
• TermVector mainly handles some vector coefficients 

In order to deal with multiple unknowns in a transparent way, in fact 

• TermMatrix handles a list of SuTermMatrix, some
• TermVector handles a list of SuTermVector, some

Su means Single unknown

Think about a block representation

v1

v2

v3

u1 u2 u3

not necessarily squared

M11 M12

a single unknown TermMatrix is 1x1 block



Understanding TermMatrix and TermVector
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This block representation (list of SuTermMatrix) is called "local" representation

• advantage : each SuTermMatrix has its own storage
• inconvenient :  not well suited when factorize matrix or apply essential 

condition

This is why in certain cicumstances , XLiFE++  is able to deal with a "global" 
representation mixing all the unknowns

it may be memory expansive !

As a consequence, the order of the unknowns may play a role. 
They are ranked in the order of creation but you can change the order by 
setting the rank of an unknown :

Unknown p(V, "p");  TestFunction q(p, "q"); 
Unknown u(H, "u");  TestFunction v(u, "v");
setRanks(p, 4, u , 2);        // u is before p

TestFunction have same rank as it related unknown 



Understanding TermMatrix and TermVector
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 Extract a block of a multiple unknown TermMatrix

...
Unknown p(V, "p");  TestFunction q(p, "q"); // p=grad(u)
Unknown u(H, "u");  TestFunction v(u, "v");
BilinearForm a=intg(omega, p|q) + intg(omega, u*div(q) ) - intg(omega, div(p)*v );
TermMatrix A(a, "A");
TermMatrix Apq = A(p,q);   

 Setting storage of a multiple unknown TermMatrix, sets storage to all SuTermMatrix, 
may be to global representation

 Summing multiple unknowns TermMatrix may be complex process, summing and 
concatenating same unknowns SuTermMatrix and insert SuTermMatrix

 Product of a multiple unknowns TermMatrix by a multiple unknowns TermVector
is done on each SuTermMatrix and produce a multiple unknowns TermVector
having row unknowns of TermMatrix

Similar management for TermVector
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Dirichlet condition :  

Transmission condition :  

Periodicity condition :  

Average condition :  

Essential conditions are constraints in space, main types :

lcop = val or fun on D                                (one domain )
lcop1 on D1 + lcop2 on D2 = val or fun   (two domains)

lcop, lcop1, lcop2 are linear combination of operator on unknowns
D, D1, D2 are domains where act esssential conditions

General expressions

Vector<Real> mapPM (const Point& P, Parameters& pa = defaultParameters)
{  Vector<Real> Q= P;    Q.y-=1;  return Q; }                     map Sigma+  ->  Sigma-
EssentialCondition ecd= (u|sigmaM = 1) ;                              Dirichlet condition
EssentialCondition ect =  (uM|gamma) - (uP|gamma) = f;  Transmission condition
defineMap(sigmaP, sigmaM, mapPM);
EssentialCondition ecp = (u|sigmaP) - (u|sigmaM) = 0;       Periodic condition

Essential conditions
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• Collect essential conditions in a constraints system :

• Reduce by QR algorithm to a minimal system :

• Reduce problem to solve

(for Dirichlet condition                                                                   )   

General process to deal with many conditions (very powerful)

Collect EssentialCondition in a list :   EssentialConditions

EssentialConditions ecs= (u|gammaM = 0) & (u|gammaP = 0)  & ((u|sigmaP) - (u|sigmaM) = 0);
EssentialConditions ecs= (uM|sigmaM = 1) & (uP|sigmaP = 1) & ((uM|gamma) - (uP|gamma) = 0);

Conditions may be not consistent

Detects and eliminates redundant or conflicting constraints

BilinearForm a=intg(omega, grad(u)|grad(v) );
TermMatrix A(a, intg(sigma,u) = 0 );

Average condition

Essential conditions

may be memory expansive and time expansive when global constraints 



Edge elements
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Nice periodic table of Finite Elements

Used in XLiFE++ to deal with any order Edge/Face elements



Edge/Face elements
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Not all implemented !

 on triangle : Raviart-Thomas, Nedelec Edge first and second family

 on tetrahedron : Nedelec Face and Nedelec Edge first families

Space V (omega, interpolation(_Nedelec,_ firstFamily, 1, Hrot), "V", false);
Unknown e(V,"E"); TestFunction q(e,"q");
BilinearForm a = intg(omega, curl(e)|curl(q)) - ome*intg(omega, e|q);
EssentialConditions ecs = (ncross(e) | gamma)=0;
...

basis function are get
from symbolic polynoms
representation

Dofs are moment dofs but they have virtual coordinates



Time regim problem
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There is no specific tool to deal with time regim problem!

BUT it is easy to deal with. Leap-frog scheme for wave equation

TermMatrix A(intg(omega, grad(u)|grad(v) );
TermMatrix M(m=intg(omega, u * v) );
TermVector G(intg(omega, g*v) );                           // F = h(t)*G
// leap-frog scheme
Real c=1, dt=0.004, dt2=dt*dt, cdt2=c*c*dt2;
Number nbt=200; Real t=dt;
TermMatrix L;  ldltFactorize(M, L);
TermVector zeros(u, omega, 0.);
TermVectors U(nbt);
U(1)=zeros;  U(2)=zeros;
for(Number n=2; n<nbt; n++, t+=dt)

U(n+1)=2*U(n)-U(n-1)-factSolve(L,cdt2*(A*U(n))-dt2*h(t)*G);
saveToFile("U",U,vtu);


